Andrew J Campbell
Erdoes Group
3 Publications
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 18880 |

Campbell, Andrew J, Kyle Luh, and Vlad Margarint. “Rate of Convergence in Multiple SLE Using Random Matrix Theory.” Random Matrices: Theory and Application. World Scientific Publishing, 2025. https://doi.org/10.1142/S201032632450028X.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 13975 |

Campbell, Andrew J, and Sean O’Rourke. “Spectrum of Lévy–Khintchine Random Laplacian Matrices.” Journal of Theoretical Probability. Springer Nature, 2024. https://doi.org/10.1007/s10959-023-01275-4.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 17281 |

Campbell, Andrew J, Sean O’Rourke, and David T Renfrew. “The Fractional Free Convolution of R-Diagonal Elements and Random Polynomials under Repeated Differentiation.” International Mathematics Research Notices. Oxford University Press, 2024. https://doi.org/10.1093/imrn/rnae062.
[Published Version]
View
| Files available
| DOI
Search
Filter Publications
Display / Sort
Export / Embed
Grants
3 Publications
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 18880 |

Campbell, Andrew J, Kyle Luh, and Vlad Margarint. “Rate of Convergence in Multiple SLE Using Random Matrix Theory.” Random Matrices: Theory and Application. World Scientific Publishing, 2025. https://doi.org/10.1142/S201032632450028X.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 13975 |

Campbell, Andrew J, and Sean O’Rourke. “Spectrum of Lévy–Khintchine Random Laplacian Matrices.” Journal of Theoretical Probability. Springer Nature, 2024. https://doi.org/10.1007/s10959-023-01275-4.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 17281 |

Campbell, Andrew J, Sean O’Rourke, and David T Renfrew. “The Fractional Free Convolution of R-Diagonal Elements and Random Polynomials under Repeated Differentiation.” International Mathematics Research Notices. Oxford University Press, 2024. https://doi.org/10.1093/imrn/rnae062.
[Published Version]
View
| Files available
| DOI