3 Publications

Mark all

[3]
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 18880 | OA
Campbell, Andrew J., et al. “Rate of Convergence in Multiple SLE Using Random Matrix Theory.” Random Matrices: Theory and Application, 2450028, World Scientific Publishing, 2025, doi:10.1142/S201032632450028X.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
[2]
2024 | Published | Journal Article | IST-REx-ID: 13975 | OA
Campbell, Andrew J., and Sean O’Rourke. “Spectrum of Lévy–Khintchine Random Laplacian Matrices.” Journal of Theoretical Probability, vol. 37, Springer Nature, 2024, pp. 933–73, doi:10.1007/s10959-023-01275-4.
[Published Version] View | Files available | DOI | WoS | arXiv
 
[1]
2024 | Published | Journal Article | IST-REx-ID: 17281 | OA
Campbell, Andrew J., et al. “The Fractional Free Convolution of R-Diagonal Elements and Random Polynomials under Repeated Differentiation.” International Mathematics Research Notices, vol. 2024, no. 13, Oxford University Press, 2024, pp. 10189–218, doi:10.1093/imrn/rnae062.
[Published Version] View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: MLA

Export / Embed

Grants


3 Publications

Mark all

[3]
2025 | Epub ahead of print | Journal Article | IST-REx-ID: 18880 | OA
Campbell, Andrew J., et al. “Rate of Convergence in Multiple SLE Using Random Matrix Theory.” Random Matrices: Theory and Application, 2450028, World Scientific Publishing, 2025, doi:10.1142/S201032632450028X.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
[2]
2024 | Published | Journal Article | IST-REx-ID: 13975 | OA
Campbell, Andrew J., and Sean O’Rourke. “Spectrum of Lévy–Khintchine Random Laplacian Matrices.” Journal of Theoretical Probability, vol. 37, Springer Nature, 2024, pp. 933–73, doi:10.1007/s10959-023-01275-4.
[Published Version] View | Files available | DOI | WoS | arXiv
 
[1]
2024 | Published | Journal Article | IST-REx-ID: 17281 | OA
Campbell, Andrew J., et al. “The Fractional Free Convolution of R-Diagonal Elements and Random Polynomials under Repeated Differentiation.” International Mathematics Research Notices, vol. 2024, no. 13, Oxford University Press, 2024, pp. 10189–218, doi:10.1093/imrn/rnae062.
[Published Version] View | Files available | DOI
 

Search

Filter Publications

Display / Sort

Citation Style: MLA

Export / Embed