Simone Anna Elvira Rademacher
Seiringer Group
10 Publications
2024 | Published | Book (Editor) | IST-REx-ID: 18899
Maas, J., Rademacher, S. A. E., Titkos, T., & Virosztek, D. (Eds.). (2024). Optimal Transport on Quantum Structures (Vol. 29). Cham: Springer Nature. https://doi.org/10.1007/978-3-031-50466-2
View
| DOI
2022 | Published | Journal Article | IST-REx-ID: 10755 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (2022). The effective mass problem for the Landau-Pekar equations. Journal of Physics A: Mathematical and Theoretical. IOP Publishing. https://doi.org/10.1088/1751-8121/ac3947
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11917 |

Rademacher, S. A. E., & Seiringer, R. (2022). Large deviation estimates for weakly interacting bosons. Journal of Statistical Physics. Springer Nature. https://doi.org/10.1007/s10955-022-02940-4
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 12083 |

Rademacher, S. A. E. (2022). Dependent random variables in quantum dynamics. Journal of Mathematical Physics. AIP Publishing. https://doi.org/10.1063/5.0086712
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9225 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (2021). Persistence of the spectral gap for the Landau–Pekar equations. Letters in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s11005-020-01350-5
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 10738 |

Leopold, N. K., Rademacher, S. A. E., Schlein, B., & Seiringer, R. (2021). The Landau–Pekar equations: Adiabatic theorem and accuracy. Analysis and PDE. Mathematical Sciences Publishers. https://doi.org/10.2140/APDE.2021.14.2079
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9351 |

Kirkpatrick, K., Rademacher, S. A. E., & Schlein, B. (2021). A large deviation principle in many-body quantum dynamics. Annales Henri Poincare. Springer Nature. https://doi.org/10.1007/s00023-021-01044-1
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Draft | Preprint | IST-REx-ID: 9791 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (n.d.). The effective mass problem for the Landau-Pekar equations. arXiv. https://doi.org/10.48550/arXiv.2107.03720
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 14889 |

Leopold, N. K., Mitrouskas, D. J., Rademacher, S. A. E., Schlein, B., & Seiringer, R. (2021). Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron. Pure and Applied Analysis. Mathematical Sciences Publishers. https://doi.org/10.2140/paa.2021.3.653
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7611 |

Rademacher, S. A. E. (2020). Central limit theorem for Bose gases interacting through singular potentials. Letters in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s11005-020-01286-w
[Published Version]
View
| Files available
| DOI
| WoS
Grants
10 Publications
2024 | Published | Book (Editor) | IST-REx-ID: 18899
Maas, J., Rademacher, S. A. E., Titkos, T., & Virosztek, D. (Eds.). (2024). Optimal Transport on Quantum Structures (Vol. 29). Cham: Springer Nature. https://doi.org/10.1007/978-3-031-50466-2
View
| DOI
2022 | Published | Journal Article | IST-REx-ID: 10755 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (2022). The effective mass problem for the Landau-Pekar equations. Journal of Physics A: Mathematical and Theoretical. IOP Publishing. https://doi.org/10.1088/1751-8121/ac3947
[Published Version]
View
| Files available
| DOI
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11917 |

Rademacher, S. A. E., & Seiringer, R. (2022). Large deviation estimates for weakly interacting bosons. Journal of Statistical Physics. Springer Nature. https://doi.org/10.1007/s10955-022-02940-4
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 12083 |

Rademacher, S. A. E. (2022). Dependent random variables in quantum dynamics. Journal of Mathematical Physics. AIP Publishing. https://doi.org/10.1063/5.0086712
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9225 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (2021). Persistence of the spectral gap for the Landau–Pekar equations. Letters in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s11005-020-01350-5
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Journal Article | IST-REx-ID: 10738 |

Leopold, N. K., Rademacher, S. A. E., Schlein, B., & Seiringer, R. (2021). The Landau–Pekar equations: Adiabatic theorem and accuracy. Analysis and PDE. Mathematical Sciences Publishers. https://doi.org/10.2140/APDE.2021.14.2079
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9351 |

Kirkpatrick, K., Rademacher, S. A. E., & Schlein, B. (2021). A large deviation principle in many-body quantum dynamics. Annales Henri Poincare. Springer Nature. https://doi.org/10.1007/s00023-021-01044-1
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2021 | Draft | Preprint | IST-REx-ID: 9791 |

Feliciangeli, D., Rademacher, S. A. E., & Seiringer, R. (n.d.). The effective mass problem for the Landau-Pekar equations. arXiv. https://doi.org/10.48550/arXiv.2107.03720
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 14889 |

Leopold, N. K., Mitrouskas, D. J., Rademacher, S. A. E., Schlein, B., & Seiringer, R. (2021). Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron. Pure and Applied Analysis. Mathematical Sciences Publishers. https://doi.org/10.2140/paa.2021.3.653
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7611 |

Rademacher, S. A. E. (2020). Central limit theorem for Bose gases interacting through singular potentials. Letters in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s11005-020-01286-w
[Published Version]
View
| Files available
| DOI
| WoS