5 Publications

Mark all

[5]
2024 | Published | Thesis | IST-REx-ID: 17465 | OA
Shevchenko, A. (2024). High-dimensional limits in artificial neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17465
[Published Version] View | Files available | DOI
 
[4]
2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Kögler, K., Shevchenko, A., Hassani, H., & Mondelli, M. (2024). Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 24964–25015). Vienna, Austria: ML Research Press.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[3]
2023 | Published | Conference Paper | IST-REx-ID: 14459 | OA
Shevchenko, A., Kögler, K., Hassani, H., & Mondelli, M. (2023). Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 31151–31209). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 11420 | OA
Shevchenko, A., Kungurtsev, V., & Mondelli, M. (2022). Mean-field analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning Research. Journal of Machine Learning Research.
[Published Version] View | Files available | arXiv
 
[1]
2020 | Published | Conference Paper | IST-REx-ID: 9198 | OA
Shevchenko, A., & Mondelli, M. (2020). Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. In Proceedings of the 37th International Conference on Machine Learning (Vol. 119, pp. 8773–8784). ML Research Press.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed

Grants


5 Publications

Mark all

[5]
2024 | Published | Thesis | IST-REx-ID: 17465 | OA
Shevchenko, A. (2024). High-dimensional limits in artificial neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17465
[Published Version] View | Files available | DOI
 
[4]
2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Kögler, K., Shevchenko, A., Hassani, H., & Mondelli, M. (2024). Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 24964–25015). Vienna, Austria: ML Research Press.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[3]
2023 | Published | Conference Paper | IST-REx-ID: 14459 | OA
Shevchenko, A., Kögler, K., Hassani, H., & Mondelli, M. (2023). Fundamental limits of two-layer autoencoders, and achieving them with gradient methods. In Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 31151–31209). Honolulu, Hawaii, HI, United States: ML Research Press.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 11420 | OA
Shevchenko, A., Kungurtsev, V., & Mondelli, M. (2022). Mean-field analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning Research. Journal of Machine Learning Research.
[Published Version] View | Files available | arXiv
 
[1]
2020 | Published | Conference Paper | IST-REx-ID: 9198 | OA
Shevchenko, A., & Mondelli, M. (2020). Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks. In Proceedings of the 37th International Conference on Machine Learning (Vol. 119, pp. 8773–8784). ML Research Press.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed