5 Publications

Mark all

[5]
2024 | Published | Thesis | IST-REx-ID: 17465 | OA
High-dimensional limits in artificial neural networks
A. Shevchenko, High-Dimensional Limits in Artificial Neural Networks, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
[4]
2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth
K. Kögler, A. Shevchenko, H. Hassani, M. Mondelli, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 24964–25015.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[3]
2023 | Published | Conference Paper | IST-REx-ID: 14459 | OA
Fundamental limits of two-layer autoencoders, and achieving them with gradient methods
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 11420 | OA
Mean-field analysis of piecewise linear solutions for wide ReLU networks
A. Shevchenko, V. Kungurtsev, M. Mondelli, Journal of Machine Learning Research 23 (2022) 1–55.
[Published Version] View | Files available | arXiv
 
[1]
2020 | Published | Conference Paper | IST-REx-ID: 9198 | OA
Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks
A. Shevchenko, M. Mondelli, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 8773–8784.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: Default

Export / Embed

Grants


5 Publications

Mark all

[5]
2024 | Published | Thesis | IST-REx-ID: 17465 | OA
High-dimensional limits in artificial neural networks
A. Shevchenko, High-Dimensional Limits in Artificial Neural Networks, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
[4]
2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth
K. Kögler, A. Shevchenko, H. Hassani, M. Mondelli, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 24964–25015.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
[3]
2023 | Published | Conference Paper | IST-REx-ID: 14459 | OA
Fundamental limits of two-layer autoencoders, and achieving them with gradient methods
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
[2]
2022 | Published | Journal Article | IST-REx-ID: 11420 | OA
Mean-field analysis of piecewise linear solutions for wide ReLU networks
A. Shevchenko, V. Kungurtsev, M. Mondelli, Journal of Machine Learning Research 23 (2022) 1–55.
[Published Version] View | Files available | arXiv
 
[1]
2020 | Published | Conference Paper | IST-REx-ID: 9198 | OA
Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks
A. Shevchenko, M. Mondelli, in:, Proceedings of the 37th International Conference on Machine Learning, ML Research Press, 2020, pp. 8773–8784.
[Published Version] View | Files available | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: Default

Export / Embed