Disordered cellulose based nanostructures for enhanced light scattering
Caixeiro S, Peruzzo M, Onelli O, Vignolini S, Sapienza R. 2017. Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. 9(9), 7885–7890.
Download (ext.)
https://arxiv.org/abs/1702.01415
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Caixeiro, Soraya;
Peruzzo, MatildaISTA ;
Onelli, Olimpia;
Vignolini, Silvia;
Sapienza, Riccardo
Department
Abstract
Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light-matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation.
Publishing Year
Date Published
2017-03-08
Journal Title
ACS Applied Materials and Interfaces
Publisher
American Chemical Society
Acknowledgement
This research was funded by the EPSRC (EP/M027961/1), the Leverhulme Trust (RPG-2014-238), Royal Society (RG140457), the BBSRC David Phillips fellowship (BB/K014617/1), and the European Research Council (ERC-2014-STG H2020 639088). All data created during this research are provided in full in the results section and Supporting Information. They are openly available from figshare and can be accessed at ref 30.
Volume
9
Issue
9
Page
7885 - 7890
ISSN
IST-REx-ID
Cite this
Caixeiro S, Peruzzo M, Onelli O, Vignolini S, Sapienza R. Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. 2017;9(9):7885-7890. doi:10.1021/acsami.6b15986
Caixeiro, S., Peruzzo, M., Onelli, O., Vignolini, S., & Sapienza, R. (2017). Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.6b15986
Caixeiro, Soraya, Matilda Peruzzo, Olimpia Onelli, Silvia Vignolini, and Riccardo Sapienza. “Disordered Cellulose Based Nanostructures for Enhanced Light Scattering.” ACS Applied Materials and Interfaces. American Chemical Society, 2017. https://doi.org/10.1021/acsami.6b15986.
S. Caixeiro, M. Peruzzo, O. Onelli, S. Vignolini, and R. Sapienza, “Disordered cellulose based nanostructures for enhanced light scattering,” ACS Applied Materials and Interfaces, vol. 9, no. 9. American Chemical Society, pp. 7885–7890, 2017.
Caixeiro S, Peruzzo M, Onelli O, Vignolini S, Sapienza R. 2017. Disordered cellulose based nanostructures for enhanced light scattering. ACS Applied Materials and Interfaces. 9(9), 7885–7890.
Caixeiro, Soraya, et al. “Disordered Cellulose Based Nanostructures for Enhanced Light Scattering.” ACS Applied Materials and Interfaces, vol. 9, no. 9, American Chemical Society, 2017, pp. 7885–90, doi:10.1021/acsami.6b15986.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer