Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices
Cipolloni G, Erdös L, Schröder DJ. 2023. Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. 76(5), 946–1034.
Download
Journal Article
| Published
| English
Scopus indexed
Corresponding author has ISTA affiliation
Department
Grant
Abstract
We consider large non-Hermitian random matrices X with complex, independent, identically distributed centred entries and show that the linear statistics of their eigenvalues are asymptotically Gaussian for test functions having 2+ϵ derivatives. Previously this result was known only for a few special cases; either the test functions were required to be analytic [72], or the distribution of the matrix elements needed to be Gaussian [73], or at least match the Gaussian up to the first four moments [82, 56]. We find the exact dependence of the limiting variance on the fourth cumulant that was not known before. The proof relies on two novel ingredients: (i) a local law for a product of two resolvents of the Hermitisation of X with different spectral parameters and (ii) a coupling of several weakly dependent Dyson Brownian motions. These methods are also the key inputs for our analogous results on the linear eigenvalue statistics of real matrices X that are presented in the companion paper [32].
Publishing Year
Date Published
2023-05-01
Journal Title
Communications on Pure and Applied Mathematics
Publisher
Wiley
Acknowledgement
L.E. would like to thank Nathanaël Berestycki and D.S.would like to thank Nina Holden for valuable discussions on the Gaussian freefield.G.C. and L.E. are partially supported by ERC Advanced Grant No. 338804.G.C. received funding from the European Union’s Horizon 2020 research and in-novation programme under the Marie Skłodowska-Curie Grant Agreement No.665385. D.S. is supported by Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
Volume
76
Issue
5
Page
946-1034
ISSN
eISSN
IST-REx-ID
Cite this
Cipolloni G, Erdös L, Schröder DJ. Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. 2023;76(5):946-1034. doi:10.1002/cpa.22028
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. Wiley. https://doi.org/10.1002/cpa.22028
Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices.” Communications on Pure and Applied Mathematics. Wiley, 2023. https://doi.org/10.1002/cpa.22028.
G. Cipolloni, L. Erdös, and D. J. Schröder, “Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices,” Communications on Pure and Applied Mathematics, vol. 76, no. 5. Wiley, pp. 946–1034, 2023.
Cipolloni G, Erdös L, Schröder DJ. 2023. Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. 76(5), 946–1034.
Cipolloni, Giorgio, et al. “Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices.” Communications on Pure and Applied Mathematics, vol. 76, no. 5, Wiley, 2023, pp. 946–1034, doi:10.1002/cpa.22028.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
File Name
2023_CommPureMathematics_Cipolloni.pdf
803.44 KB
Access Level
Open Access
Date Uploaded
2023-10-04
MD5 Checksum
8346bc2642afb4ccb7f38979f41df5d9
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1912.04100