TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms

Stefanescu C, Van Gogh M, Roblek M, Heikenwalder M, Borsig L. 2021. TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms. Frontiers in Oncology. 11, 765151.

Download
OA 2021_Frontiers_Stefanescu.pdf 9.25 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Stefanescu, Cristina; Van Gogh, Merel; Roblek, MarkoISTA ; Heikenwalder, Mathias; Borsig, Lubor
Department
Abstract
TGFβ overexpression is commonly detected in cancer patients and correlates with poor prognosis and metastasis. Cancer progression is often associated with an enhanced recruitment of myeloid-derived cells to the tumor microenvironment. Here we show that functional TGFβ-signaling in myeloid cells is required for metastasis to the lungs and the liver. Myeloid-specific deletion of Tgfbr2 resulted in reduced spontaneous lung metastasis, which was associated with a reduction of proinflammatory cytokines in the metastatic microenvironment. Notably, CD8+ T cell depletion in myeloid-specific Tgfbr2-deficient mice rescued lung metastasis. Myeloid-specific Tgfbr2-deficiency resulted in reduced liver metastasis with an almost complete absence of myeloid cells within metastatic foci. On contrary, an accumulation of Tgfβ-responsive myeloid cells was associated with an increased recruitment of monocytes and granulocytes and higher proinflammatory cytokine levels in control mice. Monocytic cells isolated from metastatic livers of Tgfbr2-deficient mice showed increased polarization towards the M1 phenotype, Tnfα and Il-1β expression, reduced levels of M2 markers and reduced production of chemokines responsible for myeloid-cell recruitment. No significant differences in Tgfβ levels were observed at metastatic sites of any model. These data demonstrate that Tgfβ signaling in monocytic myeloid cells suppresses CD8+ T cell activity during lung metastasis, while these cells actively contribute to tumor growth during liver metastasis. Thus, myeloid cells modulate metastasis through different mechanisms in a tissue-specific manner.
Publishing Year
Date Published
2021-11-18
Journal Title
Frontiers in Oncology
Publisher
Frontiers
Acknowledgement
The authors acknowledge the assistance of the Laboratory Animal Services Center (LASC) – UZH, Center for Microscopy and Image Analysis, and the Flow Cytometry Center of the University of Zurich.
Volume
11
Article Number
765151
eISSN
IST-REx-ID

Cite this

Stefanescu C, Van Gogh M, Roblek M, Heikenwalder M, Borsig L. TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms. Frontiers in Oncology. 2021;11. doi:10.3389/fonc.2021.765151
Stefanescu, C., Van Gogh, M., Roblek, M., Heikenwalder, M., & Borsig, L. (2021). TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms. Frontiers in Oncology. Frontiers. https://doi.org/10.3389/fonc.2021.765151
Stefanescu, Cristina, Merel Van Gogh, Marko Roblek, Mathias Heikenwalder, and Lubor Borsig. “TGFβ Signaling in Myeloid Cells Promotes Lung and Liver Metastasis through Different Mechanisms.” Frontiers in Oncology. Frontiers, 2021. https://doi.org/10.3389/fonc.2021.765151.
C. Stefanescu, M. Van Gogh, M. Roblek, M. Heikenwalder, and L. Borsig, “TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms,” Frontiers in Oncology, vol. 11. Frontiers, 2021.
Stefanescu C, Van Gogh M, Roblek M, Heikenwalder M, Borsig L. 2021. TGFβ signaling in myeloid cells promotes lung and liver metastasis through different mechanisms. Frontiers in Oncology. 11, 765151.
Stefanescu, Cristina, et al. “TGFβ Signaling in Myeloid Cells Promotes Lung and Liver Metastasis through Different Mechanisms.” Frontiers in Oncology, vol. 11, 765151, Frontiers, 2021, doi:10.3389/fonc.2021.765151.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-12-13
MD5 Checksum
56cbac80e6891ce750511a30161b7792


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 34868988
PubMed | Europe PMC

Search this title in

Google Scholar