Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination

Lu Y, Arshad N, Irshad MS, Ahmed I, Ahmad S, Alshahrani LA, Yousaf M, Sayed AE, Nauman M. 2021. Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination. Crystals. 11(12), 1509.

Download
OA 2021_Crystals_Yuzheng.pdf 4.57 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Lu, Yuzheng; Arshad, Naila; Irshad, Muhammad Sultan; Ahmed, Iftikhar; Ahmad, Shafiq; Alshahrani, Lina Abdullah; Yousaf, Muhammad; Sayed, Abdelaty Edrees; Nauman, MuhammadISTA
Department
Series Title
Hybrid and Composite Crystalline Materials
Abstract
A facile approach for developing an interfacial solar evaporator by heat localization of solar-thermal energy conversion at water-air liquid composed by in-situ polymerization of Fe2O3 nanoparticles (Fe2O3@PPy) deposited over a facial sponge is proposed. The demonstrated system consists of a floating solar receiver having a vertically cross-linked microchannel for wicking up saline water. The in situ polymerized Fe2O3@PPy interfacial layer promotes diffuse reflection and its rough black surface allows Omni-directional solar absorption (94%) and facilitates efficient thermal localization at the water/air interface and offers a defect-rich surface to promote heat localization (41.9 °C) and excellent thermal management due to cellulosic content. The self-floating composite foam reveals continuous vapors generation at a rate of 1.52 kg m−2 h−1 under one 1 kW m−2 and profound evaporating efficiency (95%) without heat losses that dissipates in its surroundings. Indeed, long-term evaporation experiments reveal the negligible disparity in continuous evaporation rate (33.84 kg m−2/8.3 h) receiving two sun solar intensity, and ensures the stability of the device under intense seawater conditions synchronized with excellent salt rejection potential. More importantly, Raman spectroscopy investigation validates the orange dye rejection via Fe2O3@PPy solar evaporator. The combined advantages of high efficiency, self-floating capability, multimedia rejection, low cost, and this configuration are promising for producing large-scale solar steam generating systems appropriate for commercial clean water yield due to their scalable fabrication.
Publishing Year
Date Published
2021-12-03
Journal Title
Crystals
Publisher
MDPI
Acknowledgement
The authors extend their appreciation to King Saud University for funding this work through Researchers Supporting Project number (RSP-2021/387), King Saud University, Riyadh, Saudi Arabia.
Volume
11
Issue
12
Article Number
1509
eISSN
IST-REx-ID

Cite this

Lu Y, Arshad N, Irshad MS, et al. Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination. Crystals. 2021;11(12). doi:10.3390/cryst11121509
Lu, Y., Arshad, N., Irshad, M. S., Ahmed, I., Ahmad, S., Alshahrani, L. A., … Nauman, M. (2021). Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination. Crystals. MDPI. https://doi.org/10.3390/cryst11121509
Lu, Yuzheng, Naila Arshad, Muhammad Sultan Irshad, Iftikhar Ahmed, Shafiq Ahmad, Lina Abdullah Alshahrani, Muhammad Yousaf, Abdelaty Edrees Sayed, and Muhammad Nauman. “Fe2O3 Nanoparticles Deposited over Self-Floating Facial Sponge for Facile Interfacial Seawater Solar Desalination.” Crystals. MDPI, 2021. https://doi.org/10.3390/cryst11121509.
Y. Lu et al., “Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination,” Crystals, vol. 11, no. 12. MDPI, 2021.
Lu Y, Arshad N, Irshad MS, Ahmed I, Ahmad S, Alshahrani LA, Yousaf M, Sayed AE, Nauman M. 2021. Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination. Crystals. 11(12), 1509.
Lu, Yuzheng, et al. “Fe2O3 Nanoparticles Deposited over Self-Floating Facial Sponge for Facile Interfacial Seawater Solar Desalination.” Crystals, vol. 11, no. 12, 1509, MDPI, 2021, doi:10.3390/cryst11121509.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2022-01-03
MD5 Checksum
668e9d777608ce0a3bc2e305133bd06b


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar