Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson's disease

Venezia S, Kaufmann W, Wenning GK, Stefanova N. 2021. Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson’s disease. Parkinsonism & Related Disorders. 91, 59–65.

Download
OA 2021_Parkinsonism_Venezia.pdf 6.85 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Venezia, Serena; Kaufmann, WalterISTA ; Wenning, Gregor K.; Stefanova, Nadia
Abstract
The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders.
Publishing Year
Date Published
2021-10-01
Journal Title
Parkinsonism & Related Disorders
Acknowledgement
This study was supported by grants of the Austrian Science Fund (FWF) F4414 and W1206-08. Electron microscopy was performed at the Scientific Service Units (SSU) of IST-Austria through resources provided by the Electron Microscopy Facility.
Volume
91
Page
59-65
ISSN
eISSN
IST-REx-ID

Cite this

Venezia S, Kaufmann W, Wenning GK, Stefanova N. Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson’s disease. Parkinsonism & Related Disorders. 2021;91:59-65. doi:10.1016/j.parkreldis.2021.09.007
Venezia, S., Kaufmann, W., Wenning, G. K., & Stefanova, N. (2021). Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson’s disease. Parkinsonism & Related Disorders. Elsevier. https://doi.org/10.1016/j.parkreldis.2021.09.007
Venezia, Serena, Walter Kaufmann, Gregor K. Wenning, and Nadia Stefanova. “Toll-like Receptor 4 Deficiency Facilitates α-Synuclein Propagation and Neurodegeneration in a Mouse Model of Prodromal Parkinson’s Disease.” Parkinsonism & Related Disorders. Elsevier, 2021. https://doi.org/10.1016/j.parkreldis.2021.09.007.
S. Venezia, W. Kaufmann, G. K. Wenning, and N. Stefanova, “Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson’s disease,” Parkinsonism & Related Disorders, vol. 91. Elsevier, pp. 59–65, 2021.
Venezia S, Kaufmann W, Wenning GK, Stefanova N. 2021. Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson’s disease. Parkinsonism & Related Disorders. 91, 59–65.
Venezia, Serena, et al. “Toll-like Receptor 4 Deficiency Facilitates α-Synuclein Propagation and Neurodegeneration in a Mouse Model of Prodromal Parkinson’s Disease.” Parkinsonism & Related Disorders, vol. 91, Elsevier, 2021, pp. 59–65, doi:10.1016/j.parkreldis.2021.09.007.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-01-10
MD5 Checksum
360681585acb51e80d17c6b213c56b55


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 34530328
PubMed | Europe PMC

Search this title in

Google Scholar