New correlated phenomena in magic-angle twisted bilayer graphene/s
Yankowitz M, Chen S, Polshyn H, Watanabe K, Taniguchi T, Graf D, Young AF, Dean CR, Sharpe AL, Fox EJ, Barnard AW, Finney J. 2019. New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. 03.
Download (ext.)
https://www.condmatjclub.org/?p=3541
[Published Version]
Journal Article
| Published
| English
Author
Yankowitz, Mathew;
Chen, Shaowen;
Polshyn, HryhoriyISTA ;
Watanabe, K.;
Taniguchi, T.;
Graf, David;
Young, Andrea F.;
Dean, Cory R.;
Sharpe, Aaron L.;
Fox, E.J.;
Barnard, A.W.;
Finney, Joe
All
All
Abstract
Since the discovery of correlated insulators and superconductivity in magic-angle twisted bilayer graphene (tBLG) ([1, 2], JCCM April 2018), theorists have been excitedly pursuing the alluring mix of band topology, symmetry breaking, Mott insulators and superconductivity at play, as well as the potential relation (if any) to high-Tc physics. Now a new stream
of experimental work is arriving which further enriches the story. To briefly recap Episodes 1 and 2 (JCCM April and November 2018), when two graphene layers are stacked with a small rotational mismatch θ, the resulting long-wavelength moire pattern leads to a superlattice potential which reconstructs the low energy band structure. When θ approaches the “magic-angle” θM ∼ 1 ◦, the band structure features eight nearly-flat bands which fill when the electron number per moire unit cell, n/n0, lies between −4 < n/n0 < 4. The bands can be counted as 8 = 2 × 2 × 2: for each spin (2×) and valley (2×) characteristic of monolayergraphene, tBLG has has 2× flat bands which cross at mini-Dirac points.
Publishing Year
Date Published
2019-02-28
Journal Title
Journal Club for Condensed Matter Physics
Volume
03
IST-REx-ID
Cite this
Yankowitz M, Chen S, Polshyn H, et al. New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. 2019;03. doi:10.36471/jccm_february_2019_03
Yankowitz, M., Chen, S., Polshyn, H., Watanabe, K., Taniguchi, T., Graf, D., … Finney, J. (2019). New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. Simons Foundation ; University of California, Riverside. https://doi.org/10.36471/jccm_february_2019_03
Yankowitz, Mathew, Shaowen Chen, Hryhoriy Polshyn, K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, et al. “New Correlated Phenomena in Magic-Angle Twisted Bilayer Graphene/S.” Journal Club for Condensed Matter Physics. Simons Foundation ; University of California, Riverside, 2019. https://doi.org/10.36471/jccm_february_2019_03.
M. Yankowitz et al., “New correlated phenomena in magic-angle twisted bilayer graphene/s,” Journal Club for Condensed Matter Physics, vol. 03. Simons Foundation ; University of California, Riverside, 2019.
Yankowitz M, Chen S, Polshyn H, Watanabe K, Taniguchi T, Graf D, Young AF, Dean CR, Sharpe AL, Fox EJ, Barnard AW, Finney J. 2019. New correlated phenomena in magic-angle twisted bilayer graphene/s. Journal Club for Condensed Matter Physics. 03.
Yankowitz, Mathew, et al. “New Correlated Phenomena in Magic-Angle Twisted Bilayer Graphene/S.” Journal Club for Condensed Matter Physics, vol. 03, Simons Foundation ; University of California, Riverside, 2019, doi:10.36471/jccm_february_2019_03.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access