Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function
Dietlein AM, Gebert M, Müller P. 2019. Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. 9(3), 921–965.
Download (ext.)
https://arxiv.org/abs/1701.02956
[Preprint]
DOI
Journal Article
| Published
| English
Scopus indexed
Author
Dietlein, Adrian MISTA;
Gebert, Martin;
Müller, Peter
Department
Abstract
We study effects of a bounded and compactly supported perturbation on multidimensional continuum random Schrödinger operators in the region of complete localisation. Our main emphasis is on Anderson orthogonality for random Schrödinger operators. Among others, we prove that Anderson orthogonality does occur for Fermi energies in the region of complete localisation with a non-zero probability. This partially confirms recent non-rigorous findings [V. Khemani et al., Nature Phys. 11 (2015), 560–565]. The spectral shift function plays an important role in our analysis of Anderson orthogonality. We identify it with the index of the corresponding pair of spectral projections and explore the consequences thereof. All our results rely on the main technical estimate of this paper which guarantees separate exponential decay of the disorder-averaged Schatten p-norm of χa(f(H)−f(Hτ))χb in a and b. Here, Hτ is a perturbation of the random Schrödinger operator H, χa is the multiplication operator corresponding to the indicator function of a unit cube centred about a∈Rd, and f is in a suitable class of functions of bounded variation with distributional derivative supported in the region of complete localisation for H.
Publishing Year
Date Published
2019-03-01
Journal Title
Journal of Spectral Theory
Acknowledgement
M.G. was supported by the DFG under grant GE 2871/1-1.
Volume
9
Issue
3
Page
921-965
ISSN
IST-REx-ID
Cite this
Dietlein AM, Gebert M, Müller P. Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. 2019;9(3):921-965. doi:10.4171/jst/267
Dietlein, A. M., Gebert, M., & Müller, P. (2019). Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. European Mathematical Society Publishing House. https://doi.org/10.4171/jst/267
Dietlein, Adrian M, Martin Gebert, and Peter Müller. “Perturbations of Continuum Random Schrödinger Operators with Applications to Anderson Orthogonality and the Spectral Shift Function.” Journal of Spectral Theory. European Mathematical Society Publishing House, 2019. https://doi.org/10.4171/jst/267.
A. M. Dietlein, M. Gebert, and P. Müller, “Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function,” Journal of Spectral Theory, vol. 9, no. 3. European Mathematical Society Publishing House, pp. 921–965, 2019.
Dietlein AM, Gebert M, Müller P. 2019. Perturbations of continuum random Schrödinger operators with applications to Anderson orthogonality and the spectral shift function. Journal of Spectral Theory. 9(3), 921–965.
Dietlein, Adrian M., et al. “Perturbations of Continuum Random Schrödinger Operators with Applications to Anderson Orthogonality and the Spectral Shift Function.” Journal of Spectral Theory, vol. 9, no. 3, European Mathematical Society Publishing House, 2019, pp. 921–65, doi:10.4171/jst/267.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1701.02956