Identification of long-lived proteins reveals exceptional stability of essential cellular structures

Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, Hetzer M. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 154(5), 971–982.


Journal Article | Published | English

Scopus indexed
Author
Toyama, Brandon H.; Savas, Jeffrey N.; Park, Sung Kyu; Harris, Michael S.; Ingolia, Nicholas T.; Yates, John R.; Hetzer, MartinISTA
Abstract
Intracellular proteins with long lifespans have recently been linked to age-dependent defects, ranging from decreased fertility to the functional decline of neurons. Why long-lived proteins exist in metabolically active cellular environments and how they are maintained over time remains poorly understood. Here, we provide a system-wide identification of proteins with exceptional lifespans in the rat brain. These proteins are inefficiently replenished despite being translated robustly throughout adulthood. Using nucleoporins as a paradigm for long-term protein persistence, we found that nuclear pore complexes (NPCs) are maintained over a cell’s life through slow but finite exchange of even its most stable subcomplexes. This maintenance is limited, however, as some nucleoporin levels decrease during aging, providing a rationale for the previously observed age-dependent deterioration of NPC function. Our identification of a long-lived proteome reveals cellular components that are at increased risk for damage accumulation, linking long-term protein persistence to the cellular aging process.
Publishing Year
Date Published
2013-08-29
Journal Title
Cell
Volume
154
Issue
5
Page
971-982
ISSN
IST-REx-ID

Cite this

Toyama BH, Savas JN, Park SK, et al. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 2013;154(5):971-982. doi:10.1016/j.cell.2013.07.037
Toyama, B. H., Savas, J. N., Park, S. K., Harris, M. S., Ingolia, N. T., Yates, J. R., & Hetzer, M. (2013). Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. Elsevier. https://doi.org/10.1016/j.cell.2013.07.037
Toyama, Brandon H., Jeffrey N. Savas, Sung Kyu Park, Michael S. Harris, Nicholas T. Ingolia, John R. Yates, and Martin Hetzer. “Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures.” Cell. Elsevier, 2013. https://doi.org/10.1016/j.cell.2013.07.037.
B. H. Toyama et al., “Identification of long-lived proteins reveals exceptional stability of essential cellular structures,” Cell, vol. 154, no. 5. Elsevier, pp. 971–982, 2013.
Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, Yates JR, Hetzer M. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell. 154(5), 971–982.
Toyama, Brandon H., et al. “Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures.” Cell, vol. 154, no. 5, Elsevier, 2013, pp. 971–82, doi:10.1016/j.cell.2013.07.037.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 23993091
PubMed | Europe PMC

Search this title in

Google Scholar