Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse

Chen C, Arai itaru, Satterield R, Young S, Jonas PM. 2017. Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse. Cell Reports. 18(3), 723–736.

Download
OA IST-2017-751-v1+1_1-s2.0-S2211124716317740-main.pdf 4.43 MB

Journal Article | Published | English

Scopus indexed
Author
Chen, ChongISTA; Arai, itaruISTA; Satterield, Rachel; Young, Samuel; Jonas, Peter MISTA
Department
Abstract
GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca^2+ sensor of exocytosis at GABAergic basket cell (BC) to Purkinje cell (PC) synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2), whereas synaptotagmin 1 (Syt1) was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca^2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits. #bioimagingfacility-author
Publishing Year
Date Published
2017-01-17
Journal Title
Cell Reports
Volume
18
Issue
3
Page
723 - 736
ISSN
IST-REx-ID

Cite this

Chen C, Arai itaru, Satterield R, Young S, Jonas PM. Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse. Cell Reports. 2017;18(3):723-736. doi:10.1016/j.celrep.2016.12.067
Chen, C., Arai, itaru, Satterield, R., Young, S., & Jonas, P. M. (2017). Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse. Cell Reports. Cell Press. https://doi.org/10.1016/j.celrep.2016.12.067
Chen, Chong, itaru Arai, Rachel Satterield, Samuel Young, and Peter M Jonas. “Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse.” Cell Reports. Cell Press, 2017. https://doi.org/10.1016/j.celrep.2016.12.067.
C. Chen, itaru Arai, R. Satterield, S. Young, and P. M. Jonas, “Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse,” Cell Reports, vol. 18, no. 3. Cell Press, pp. 723–736, 2017.
Chen C, Arai itaru, Satterield R, Young S, Jonas PM. 2017. Synaptotagmin 2 is the fast Ca2+ sensor at a central inhibitory synapse. Cell Reports. 18(3), 723–736.
Chen, Chong, et al. “Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse.” Cell Reports, vol. 18, no. 3, Cell Press, 2017, pp. 723–36, doi:10.1016/j.celrep.2016.12.067.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar