Unidentified major p-type source in SnSe: Multivacancies

Nguyen VQ, Trinh TL, Chang C, Zhao LD, Nguyen TH, Duong VT, Duong AT, Park JH, Park S, Kim J, Cho S. 2022. Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials. 14, 42.

Download
OA 2022_NPGAsiaMaterials_Nguyen.pdf 6.20 MB

Journal Article | Published | English

Scopus indexed
Author
Nguyen, Van Quang; Trinh, Thi Ly; Chang, ChengISTA ; Zhao, Li Dong; Nguyen, Thi Huong; Duong, Van Thiet; Duong, Anh Tuan; Park, Jong Ho; Park, Sudong; Kim, Jungdae; Cho, Sunglae
Department
Abstract
Tin selenide (SnSe) is considered a robust candidate for thermoelectric applications due to its very high thermoelectric figure of merit, ZT, with values of 2.6 in p-type and 2.8 in n-type single crystals. Sn has been replaced with various lower group dopants to achieve successful p-type doping in SnSe with high ZT values. A known, facile, and powerful alternative way to introduce a hole carrier is to use a natural single Sn vacancy, VSn. Through transport and scanning tunneling microscopy studies, we discovered that VSn are dominant in high-quality (slow cooling rate) SnSe single crystals, while multiple vacancies, Vmulti, are dominant in low-quality (high cooling rate) single crystals. Surprisingly, both VSn and Vmulti help to increase the power factors of SnSe, whereas samples with dominant VSn have superior thermoelectric properties in SnSe single crystals. Additionally, the observation that Vmulti are good p-type sources observed in relatively low-quality single crystals is useful in thermoelectric applications because polycrystalline SnSe can be used due to its mechanical strength; this substance is usually fabricated at very high cooling speeds.
Publishing Year
Date Published
2022-05-13
Journal Title
NPG Asia Materials
Acknowledgement
This work was supported by the National Research Foundation of Korea [NRF-2019R1F1A1058473, NRF-2019R1A6A1A11053838, and NRF-2020K1A4A7A02095438].
Volume
14
Article Number
42
ISSN
eISSN
IST-REx-ID

Cite this

Nguyen VQ, Trinh TL, Chang C, et al. Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials. 2022;14. doi:10.1038/s41427-022-00393-5
Nguyen, V. Q., Trinh, T. L., Chang, C., Zhao, L. D., Nguyen, T. H., Duong, V. T., … Cho, S. (2022). Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials. Springer Nature. https://doi.org/10.1038/s41427-022-00393-5
Nguyen, Van Quang, Thi Ly Trinh, Cheng Chang, Li Dong Zhao, Thi Huong Nguyen, Van Thiet Duong, Anh Tuan Duong, et al. “Unidentified Major P-Type Source in SnSe: Multivacancies.” NPG Asia Materials. Springer Nature, 2022. https://doi.org/10.1038/s41427-022-00393-5.
V. Q. Nguyen et al., “Unidentified major p-type source in SnSe: Multivacancies,” NPG Asia Materials, vol. 14. Springer Nature, 2022.
Nguyen VQ, Trinh TL, Chang C, Zhao LD, Nguyen TH, Duong VT, Duong AT, Park JH, Park S, Kim J, Cho S. 2022. Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials. 14, 42.
Nguyen, Van Quang, et al. “Unidentified Major P-Type Source in SnSe: Multivacancies.” NPG Asia Materials, vol. 14, 42, Springer Nature, 2022, doi:10.1038/s41427-022-00393-5.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-05-23
MD5 Checksum
0579997cc1d28bf66e29357e08e3e39d


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar