The chemistry of Cu₃N and Cu₃PdN nanocrystals

Parvizian M, Duràn Balsa A, Pokratath R, Kalha C, Lee S, Van Den Eynden D, Ibáñez M, Regoutz A, De Roo J. 2022. The chemistry of Cu₃N and Cu₃PdN nanocrystals. Angewandte Chemie - International Edition. 61(31), e202207013.

Download
OA 2022_AngewandteChemieInternat_Parvizian.pdf 1.30 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Parvizian, Mahsa; Duràn Balsa, Alejandra; Pokratath, Rohan; Kalha, Curran; Lee, SeunghoISTA ; Van Den Eynden, Dietger; Ibáñez , MariaISTA ; Regoutz, Anna; De Roo, Jonathan
Department
Abstract
The precursor conversion chemistry and surface chemistry of Cu3N and Cu3PdN nanocrystals are unknown or contested. Here, we first obtain phase-pure, colloidally stable nanocubes. Second, we elucidate the pathway by which copper(II) nitrate and oleylamine form Cu3N. We find that oleylamine is both a reductant and a nitrogen source. Oleylamine is oxidized by nitrate to a primary aldimine, which reacts further with excess oleylamine to a secondary aldimine, eliminating ammonia. Ammonia reacts with CuI to form Cu3N. Third, we investigated the surface chemistry and find a mixed ligand shell of aliphatic amines and carboxylates (formed in situ). While the carboxylates appear tightly bound, the amines are easily desorbed from the surface. Finally, we show that doping with palladium decreases the band gap and the material becomes semi-metallic. These results bring insight into the chemistry of metal nitrides and might help the development of other metal nitride nanocrystals.
Publishing Year
Date Published
2022-08-01
Journal Title
Angewandte Chemie - International Edition
Publisher
Wiley
Acknowledgement
J.D.R. and M.P. acknowledge the SNF Eccellenza funding scheme (project number: 194172). We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at beamline P21.1, PETRA III. We thank Dr. Soham Banerjee for acquiring the PDF data and helpful advice. A.R. acknowledges the support from the Analytical Chemistry Trust Fund for her CAMS-UK Fellowship. C.K. acknowledges the support from the Department of Chemistry, UCL. The authors acknowledge Dr Stephan Lany from NREL for providing the Cu3N DFT calculations. The authors thank Prof. Raymond Schaak and Dr. Robert William Lord for helpful advice and suggestions regarding the purification procedure. Open access funding provided by Universitat Basel.
Volume
61
Issue
31
Article Number
e202207013
ISSN
eISSN
IST-REx-ID

Cite this

Parvizian M, Duràn Balsa A, Pokratath R, et al. The chemistry of Cu₃N and Cu₃PdN nanocrystals. Angewandte Chemie - International Edition. 2022;61(31). doi:10.1002/anie.202207013
Parvizian, M., Duràn Balsa, A., Pokratath, R., Kalha, C., Lee, S., Van Den Eynden, D., … De Roo, J. (2022). The chemistry of Cu₃N and Cu₃PdN nanocrystals. Angewandte Chemie - International Edition. Wiley. https://doi.org/10.1002/anie.202207013
Parvizian, Mahsa, Alejandra Duràn Balsa, Rohan Pokratath, Curran Kalha, Seungho Lee, Dietger Van Den Eynden, Maria Ibáñez, Anna Regoutz, and Jonathan De Roo. “The Chemistry of Cu₃N and Cu₃PdN Nanocrystals.” Angewandte Chemie - International Edition. Wiley, 2022. https://doi.org/10.1002/anie.202207013.
M. Parvizian et al., “The chemistry of Cu₃N and Cu₃PdN nanocrystals,” Angewandte Chemie - International Edition, vol. 61, no. 31. Wiley, 2022.
Parvizian M, Duràn Balsa A, Pokratath R, Kalha C, Lee S, Van Den Eynden D, Ibáñez M, Regoutz A, De Roo J. 2022. The chemistry of Cu₃N and Cu₃PdN nanocrystals. Angewandte Chemie - International Edition. 61(31), e202207013.
Parvizian, Mahsa, et al. “The Chemistry of Cu₃N and Cu₃PdN Nanocrystals.” Angewandte Chemie - International Edition, vol. 61, no. 31, e202207013, Wiley, 2022, doi:10.1002/anie.202207013.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-07-29
MD5 Checksum
2a3ee0bb59e044b808ebe85cd94ac899


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 35612297
PubMed | Europe PMC

Search this title in

Google Scholar