The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3

Feltre A, Maseda MV, Bacon R, Pradeep J, Leclercq F, Kusakabe H, Wisotzki L, Hashimoto T, Schmidt KB, Blaizot J, Brinchmann J, Boogaard L, Cantalupo S, Carton D, Inami H, Kollatschny W, Marino RA, Matthee JJ, Nanayakkara T, Richard J, Schaye J, Tresse L, Urrutia T, Verhamme A, Weilbacher PM. 2020. The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3. Astronomy & Astrophysics. 641, A118.

Download (ext.)
OA https://arxiv.org/abs/2007.01878 [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Feltre, Anna; Maseda, Michael V.; Bacon, Roland; Pradeep, Jayadev; Leclercq, Floriane; Kusakabe, Haruka; Wisotzki, Lutz; Hashimoto, Takuya; Schmidt, Kasper B.; Blaizot, Jeremy; Brinchmann, Jarle; Boogaard, Leindert
All
Abstract
We investigated the ultraviolet (UV) spectral properties of faint Lyman-α emitters (LAEs) in the redshift range 2.9 ≤ z ≤ 4.6, and we provide material to prepare future observations of the faint Universe. We used data from the MUSE Hubble Ultra Deep Survey to construct mean rest-frame spectra of continuum-faint (median MUV of −18 and down to MUV of −16), low stellar mass (median value of 108.4 M⊙ and down to 107 M⊙) LAEs at redshift z ≳ 3. We computed various averaged spectra of LAEs, subsampled on the basis of their observational (e.g., Lyα strength, UV magnitude and spectral slope) and physical (e.g., stellar mass and star-formation rate) properties. We searched for UV spectral features other than Lyα, such as higher ionization nebular emission lines and absorption features. We successfully observed the O III]λ1666 and [C III]λ1907+C III]λ1909 collisionally excited emission lines and the He IIλ1640 recombination feature, as well as the resonant C IVλλ1548,1551 doublet either in emission or P-Cygni. We compared the observed spectral properties of the different mean spectra and find the emission lines to vary with the observational and physical properties of the LAEs. In particular, the mean spectra of LAEs with larger Lyα equivalent widths, fainter UV magnitudes, bluer UV spectral slopes, and lower stellar masses show the strongest nebular emission. The line ratios of these lines are similar to those measured in the spectra of local metal-poor galaxies, while their equivalent widths are weaker compared to the handful of extreme values detected in individual spectra of z >  2 galaxies. This suggests that weak UV features are likely ubiquitous in high z, low-mass, and faint LAEs. We publicly released the stacked spectra, as they can serve as empirical templates for the design of future observations, such as those with the James Webb Space Telescope and the Extremely Large Telescope.
Publishing Year
Date Published
2020-09-18
Journal Title
Astronomy & Astrophysics
Publisher
EDP Sciences
Acknowledgement
We thank Margherita Talia, Stéphane Charlot, Adele Plat and Alba Vidal-García for helpful discussions. This work is supported by the ERC advanced grant 339659-MUSICOS (R. Bacon). AF acknowledges the support from grant PRIN MIUR 2017 20173ML3WW. MVM and JP would like to thank the Leiden/ESA Astrophysics Program for Summer Students (LEAPS) for funding at the outset of this project. FL, HK, and AV acknowledge support from the ERC starting grant ERC-757258-TRIPLE. TH was supported by Leading Initiative for Excellent Young Researchers, MEXT, Japan. JB acknowledges support by FCT/MCTES through national funds by the grant UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020 and through the Investigador FCT Contract No. IF/01654/2014/CP1215/CT0003. HI acknowledges support from JSPS KAKENHI Grant Number JP19K23462. We would also like to thank the organizers and participants of the Leiden Lorentz Center workshop: Revolutionary Spectroscopy of Today as a Springboard to Webb. This work made use of several open source python packages: NUMPY (van der Walt et al. 2011), MATPLOTLIB (Hunter 2007), ASTROPY (Astropy Collaboration 2013) and MPDAF (MUSE Python Data Analysis Framework, Piqueras et al. 2019).
Volume
641
Article Number
A118
ISSN
eISSN
IST-REx-ID

Cite this

Feltre A, Maseda MV, Bacon R, et al. The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3. Astronomy & Astrophysics. 2020;641. doi:10.1051/0004-6361/202038133
Feltre, A., Maseda, M. V., Bacon, R., Pradeep, J., Leclercq, F., Kusakabe, H., … Weilbacher, P. M. (2020). The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/202038133
Feltre, Anna, Michael V. Maseda, Roland Bacon, Jayadev Pradeep, Floriane Leclercq, Haruka Kusakabe, Lutz Wisotzki, et al. “The MUSE Hubble Ultra Deep Field Survey: XV. The Mean Rest-UV Spectra of Lyα Emitters at z > 3.” Astronomy & Astrophysics. EDP Sciences, 2020. https://doi.org/10.1051/0004-6361/202038133.
A. Feltre et al., “The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3,” Astronomy & Astrophysics, vol. 641. EDP Sciences, 2020.
Feltre A, Maseda MV, Bacon R, Pradeep J, Leclercq F, Kusakabe H, Wisotzki L, Hashimoto T, Schmidt KB, Blaizot J, Brinchmann J, Boogaard L, Cantalupo S, Carton D, Inami H, Kollatschny W, Marino RA, Matthee JJ, Nanayakkara T, Richard J, Schaye J, Tresse L, Urrutia T, Verhamme A, Weilbacher PM. 2020. The MUSE Hubble Ultra Deep Field Survey: XV. The mean rest-UV spectra of Lyα emitters at z > 3. Astronomy & Astrophysics. 641, A118.
Feltre, Anna, et al. “The MUSE Hubble Ultra Deep Field Survey: XV. The Mean Rest-UV Spectra of Lyα Emitters at z > 3.” Astronomy & Astrophysics, vol. 641, A118, EDP Sciences, 2020, doi:10.1051/0004-6361/202038133.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2007.01878

Search this title in

Google Scholar