Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler

Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. 2019. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 6, 46.


Journal Article | Published | English

Scopus indexed
Author
Mathur, Savita; García, Rafael A.; Bugnet, Lisa AnnabelleISTA ; Santos, Ângela R.G.; Santiago, Netsha; Beck, Paul G.
Abstract
Over 2,000 stars were observed for 1 month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillations were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity of the stars. However, the sample of stars studied contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of main-sequence solar-like stars that consists of 1,014 stars. First we compute the predicted amplitude of the modes of that sample and for the stars with detected oscillation and compare it to the noise at high frequency in the power spectrum. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars out of the full sample and in particular for 323 stars where the amplitude of the modes is predicted to be high enough to be detected. We find that among these 323 stars 32% of them have a level of magnetic activity larger than the Sun during its maximum activity, explaining the non-detection of acoustic modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without acoustic modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle of the rotation axis, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20–30 ppm) below which rotation and magnetic activity are not detected. Finally, with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected.
Publishing Year
Date Published
2019-07-10
Journal Title
Frontiers in Astronomy and Space Sciences
Acknowledgement
This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Partly Based on observations obtained with the HERMES spectrograph on the Mercator Telescope, which was supported by the Research Foundation—Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany. SM acknowledges support by the National Aeronautics and Space Administration under Grant NNX15AF13G, by the National Science Foundation grant AST-1411685, and the Ramon y Cajal fellowship number RYC-2015-17697. RG acknowledges the support from PLATO and GOLF CNES grants. ÂS acknowledges the support from National Aeronautics and Space Administration under Grant NNX17AF27G. PB acknowledges the support of the MINECO under the fellowship program Juan de la Cierva Incorporacion (IJCI-2015-26034).
Volume
6
Article Number
46
eISSN
IST-REx-ID

Cite this

Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 2019;6. doi:10.3389/fspas.2019.00046
Mathur, S., García, R. A., Bugnet, L. A., Santos, Â. R. G., Santiago, N., & Beck, P. G. (2019). Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. Frontiers Media. https://doi.org/10.3389/fspas.2019.00046
Mathur, Savita, Rafael A. García, Lisa Annabelle Bugnet, Ângela R.G. Santos, Netsha Santiago, and Paul G. Beck. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences. Frontiers Media, 2019. https://doi.org/10.3389/fspas.2019.00046.
S. Mathur, R. A. García, L. A. Bugnet, Â. R. G. Santos, N. Santiago, and P. G. Beck, “Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler,” Frontiers in Astronomy and Space Sciences, vol. 6. Frontiers Media, 2019.
Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. 2019. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 6, 46.
Mathur, Savita, et al. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences, vol. 6, 46, Frontiers Media, 2019, doi:10.3389/fspas.2019.00046.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1907.01415

Search this title in

Google Scholar