Incremental exact min-cut in polylogarithmic amortized update time

Goranci G, Henzinger MH, Thorup M. 2018. Incremental exact min-cut in polylogarithmic amortized update time. ACM Transactions on Algorithms. 14(2), 17.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Goranci, Gramoz; Henzinger, MonikaISTA ; Thorup, Mikkel
Abstract
We present a deterministic incremental algorithm for exactly maintaining the size of a minimum cut with O(log3 n log log2 n) amortized time per edge insertion and O(1) query time. This result partially answers an open question posed by Thorup (2007). It also stays in sharp contrast to a polynomial conditional lower bound for the fully dynamic weighted minimum cut problem. Our algorithm is obtained by combining a sparsification technique of Kawarabayashi and Thorup (2015) or its recent improvement by Henzinger, Rao, and Wang (2017), and an exact incremental algorithm of Henzinger (1997). We also study space-efficient incremental algorithms for the minimum cut problem. Concretely, we show that there exists an O(nlog n/ε2) space Monte Carlo algorithm that can process a stream of edge insertions starting from an empty graph, and with high probability, the algorithm maintains a (1+ε)-approximation to the minimum cut. The algorithm has O((α (n) log3 n)/ε 2) amortized update time and constant query time, where α (n) stands for the inverse of Ackermann function.
Publishing Year
Date Published
2018-04-01
Journal Title
ACM Transactions on Algorithms
Acknowledgement
We thank the two anonymous reviewers for their suggestions and comments, which improved the quality of the article.
Volume
14
Issue
2
Article Number
17
ISSN
eISSN
IST-REx-ID

Cite this

Goranci G, Henzinger MH, Thorup M. Incremental exact min-cut in polylogarithmic amortized update time. ACM Transactions on Algorithms. 2018;14(2). doi:10.1145/3174803
Goranci, G., Henzinger, M. H., & Thorup, M. (2018). Incremental exact min-cut in polylogarithmic amortized update time. ACM Transactions on Algorithms. Association for Computing Machinery. https://doi.org/10.1145/3174803
Goranci, Gramoz, Monika H Henzinger, and Mikkel Thorup. “Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time.” ACM Transactions on Algorithms. Association for Computing Machinery, 2018. https://doi.org/10.1145/3174803.
G. Goranci, M. H. Henzinger, and M. Thorup, “Incremental exact min-cut in polylogarithmic amortized update time,” ACM Transactions on Algorithms, vol. 14, no. 2. Association for Computing Machinery, 2018.
Goranci G, Henzinger MH, Thorup M. 2018. Incremental exact min-cut in polylogarithmic amortized update time. ACM Transactions on Algorithms. 14(2), 17.
Goranci, Gramoz, et al. “Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time.” ACM Transactions on Algorithms, vol. 14, no. 2, 17, Association for Computing Machinery, 2018, doi:10.1145/3174803.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1611.06500

Search this title in

Google Scholar