Dynamic algorithms via the primal-dual method
Bhattacharya S, Henzinger M, Italiano G. 2018. Dynamic algorithms via the primal-dual method. Information and Computation. 261(08), 219–239.
Download (ext.)
https://doi.org/10.1016/j.ic.2018.02.005
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Bhattacharya, Sayan;
Henzinger, MonikaISTA ;
Italiano, Giuseppe
Abstract
We develop a dynamic version of the primal-dual method for optimization problems, and apply it to obtain the following results. (1) For the dynamic set-cover problem, we maintain an O ( f 2)-approximately optimal solution in O ( f · log(m + n)) amortized update time, where f is the maximum “frequency” of an element, n is the number of sets, and m is the maximum number of elements in the universe at any point in time. (2) For the dynamic b-matching problem, we maintain an O (1)-approximately optimal solution in O (log3 n) amortized update time, where n is the number of nodes in the graph.
Publishing Year
Date Published
2018-08-01
Journal Title
Information and Computation
Publisher
Elsevier
Volume
261
Issue
08
Page
219-239
ISSN
IST-REx-ID
Cite this
Bhattacharya S, Henzinger M, Italiano G. Dynamic algorithms via the primal-dual method. Information and Computation. 2018;261(08):219-239. doi:10.1016/j.ic.2018.02.005
Bhattacharya, S., Henzinger, M., & Italiano, G. (2018). Dynamic algorithms via the primal-dual method. Information and Computation. Elsevier. https://doi.org/10.1016/j.ic.2018.02.005
Bhattacharya, Sayan, Monika Henzinger, and Giuseppe Italiano. “Dynamic Algorithms via the Primal-Dual Method.” Information and Computation. Elsevier, 2018. https://doi.org/10.1016/j.ic.2018.02.005.
S. Bhattacharya, M. Henzinger, and G. Italiano, “Dynamic algorithms via the primal-dual method,” Information and Computation, vol. 261, no. 08. Elsevier, pp. 219–239, 2018.
Bhattacharya S, Henzinger M, Italiano G. 2018. Dynamic algorithms via the primal-dual method. Information and Computation. 261(08), 219–239.
Bhattacharya, Sayan, et al. “Dynamic Algorithms via the Primal-Dual Method.” Information and Computation, vol. 261, no. 08, Elsevier, 2018, pp. 219–39, doi:10.1016/j.ic.2018.02.005.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access