Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature
Artner C. 2022. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria.
Download
Thesis
| PhD
| Published
| English
Author
Supervisor
Department
Series Title
ISTA Thesis
Abstract
As the overall global mean surface temperature is increasing due to climate change, plant
adaptation to those stressful conditions is of utmost importance for their survival. Plants are
sessile organisms, thus to compensate for their lack of mobility, they evolved a variety of
mechanisms enabling them to flexibly adjust their physiological, growth and developmental
processes to fluctuating temperatures and to survive in harsh environments. While these unique
adaptation abilities provide an important evolutionary advantage, overall modulation of plant
growth and developmental program due to non-optimal temperature negatively affects biomass
production, crop productivity or sensitivity to pathogens. Thus, understanding molecular
processes underlying plant adaptation to increased temperature can provide important
resources for breeding strategies to ensure sufficient agricultural food production.
An increase in ambient temperature by a few degrees leads to profound changes in organ growth
including enhanced hypocotyl elongation, expansion of petioles, hyponastic growth of leaves and
cotyledons, collectively named thermomorphogenesis (Casal & Balasubramanian, 2019). Auxin,
one of the best-studied growth hormones, plays an essential role in this process by direct
activation of transcriptional and non-transcriptional processes resulting in elongation growth
(Majda & Robert, 2018).To modulate hypocotyl growth in response to high ambient temperature
(hAT), auxin needs to be redistributed accordingly. PINs, auxin efflux transporters, are key
components of the polar auxin transport (PAT) machinery, which controls the amount and
direction of auxin translocated in the plant tissues and organs(Adamowski & Friml, 2015). Hence,
PIN-mediated transport is tightly linked with thermo-morphogenesis, and interference with PAT
through either chemical or genetic means dramatically affecting the adaptive responses to hAT.
Intriguingly, despite the key role of PIN mediated transport in growth response to hAT, whether
and how PINs at the level of expression adapt to fluctuation in temperature is scarcely
understood.
With genetic, molecular and advanced bio-imaging approaches, we demonstrate the role of PIN
auxin transporters in the regulation of hypocotyl growth in response to hAT. We show that via
adjustment of PIN3, PIN4 and PIN7 expression in cotyledons and hypocotyls, auxin distribution is modulated thereby determining elongation pattern of epidermal cells at hAT. Furthermore, we
identified three Zinc-Finger (ZF) transcription factors as novel molecular components of the
thermo-regulatory network, which through negative regulation of PIN transcription adjust the
transport of auxin at hAT. Our results suggest that the ZF-PIN module might be a part of the
negative feedback loop attenuating the activity of the thermo-sensing pathway to restrain
exaggerated growth and developmental responses to hAT.
Publishing Year
Date Published
2022-08-17
Acknowledgement
I would like to acknowledge ISTA and all the people from the Scientific Service Units and at ISTA, in particular Dorota Jaworska for excellent technical and scientific support as well as ÖAW for funding my research for over 3 years (DOC ÖAW Fellowship PR1022OEAW02).
Acknowledged SSUs
Page
128
ISBN
ISSN
IST-REx-ID
Cite this
Artner C. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. 2022. doi:10.15479/at:ista:11879
Artner, C. (2022). Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11879
Artner, Christina. “Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11879.
C. Artner, “Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature,” Institute of Science and Technology Austria, 2022.
Artner C. 2022. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria.
Artner, Christina. Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11879.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
ChristinaArtner_PhD_Thesis_2022.pdf
11.11 MB
Access Level
Open Access
Date Uploaded
2022-08-17
Embargo End Date
2023-09-08
MD5 Checksum
a2c2fdc28002538840490bfa6a08b2cb
Source File
File Name
ChristinaArtner_PhD_Thesis_2022.7z
19.10 MB
Access Level
Closed Access
Date Uploaded
2022-08-17
MD5 Checksum
66b461c074b815fbe63481b3f46a9f43