Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient
Zhang L, Liu X, Wu T, Xu S, Suo G, Ye X, Hou X, Yang Y, Liu Q, Wang H. 2023. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 613, 156101.
Download
No fulltext has been uploaded. References only!
Journal Article
| Epub ahead of print
| English
Scopus indexed
Author
Zhang, Li;
Liu, Xingyu;
Wu, Ting;
Xu, ShengduoISTA;
Suo, Guoquan;
Ye, Xiaohui;
Hou, Xiaojiang;
Yang, Yanling;
Liu, Qingfeng;
Wang, Hongqiang
Department
Abstract
The power factor of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be significantly improved by optimizing the oxidation level of the film in oxidation and reduction processes. However, precise control over the oxidation and reduction effects in PEDOT:PSS remains a challenge, which greatly sacrifices both S and σ. Here, we propose a two-step post-treatment using a mixture of ethylene glycol (EG) and Arginine (Arg) and sulfuric acid (H2SO4) in sequence to engineer high-performance PEDOT:PSS thermoelectric films. The high-polarity EG dopant removes the excess non-ionized PSS and induces benzenoid-to-quinoid conformational change in the PEDOT:PSS films. In particular, basic amino acid Arg tunes the oxidation level of PEDOT:PSS and prevents the films from over-oxidation during H2SO4 post-treatment, leading to increased S. The following H2SO4 post-treatment further induces highly orientated lamellar stacking microstructures to increase σ, yielding a maximum power factor of 170.6 μW m−1 K−2 at 460 K. Moreover, a novel trigonal-shape thermoelectric device is designed and assembled by the as-prepared PEDOT:PSS films in order to harvest heat via a vertical temperature gradient. An output power density of 33 μW cm−2 is generated at a temperature difference of 40 K, showing the potential application for low-grade wearable electronic devices.
Keywords
Publishing Year
Date Published
2023-03-15
Journal Title
Applied Surface Science
Publisher
Elsevier
Acknowledgement
Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.22JY012), Natural Science Basic Research Program of Shaanxi (Grant No.2022JZ-31), Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No.20210411), China Postdoctoral Science Foundation (Grant No. 2021M692621), the Foundation of Shaanxi University of Science & Technology (Grant No. 2017GBJ-03), Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology (Grant No. KFKT2022-15), and Open Foundation of Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology (Grant No. KFKT2022-15).
Volume
613
Article Number
156101
ISSN
IST-REx-ID
Cite this
Zhang L, Liu X, Wu T, et al. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 2023;613. doi:10.1016/j.apsusc.2022.156101
Zhang, L., Liu, X., Wu, T., Xu, S., Suo, G., Ye, X., … Wang, H. (2023). Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. Elsevier. https://doi.org/10.1016/j.apsusc.2022.156101
Zhang, Li, Xingyu Liu, Ting Wu, Shengduo Xu, Guoquan Suo, Xiaohui Ye, Xiaojiang Hou, Yanling Yang, Qingfeng Liu, and Hongqiang Wang. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science. Elsevier, 2023. https://doi.org/10.1016/j.apsusc.2022.156101.
L. Zhang et al., “Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient,” Applied Surface Science, vol. 613. Elsevier, 2023.
Zhang L, Liu X, Wu T, Xu S, Suo G, Ye X, Hou X, Yang Y, Liu Q, Wang H. 2023. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 613, 156101.
Zhang, Li, et al. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science, vol. 613, 156101, Elsevier, 2023, doi:10.1016/j.apsusc.2022.156101.
Export
Marked PublicationsOpen Data ISTA Research Explorer