Experimental analysis of Cascade CSTRs with step and pulse inputs

Khatoon B, Kamil S, Babu H, Siraj Alam M. 2023. Experimental analysis of Cascade CSTRs with step and pulse inputs. Materials Today: Proceedings. 78(Part 1), 40–47.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Khatoon, Bushra; Kamil, ShoaibISTA; Babu, Hitesh; Siraj Alam, M.
Department
Abstract
In industrial reactors and equipment, non-ideality is quite a common phenomenon rather than an exception. These deviations from ideality impact the process's overall efficiency and the effectiveness of the equipment. To recognize the associated non-ideality, one needs to have enough understanding of the formulation of the equations and in-depth knowledge of the residence time distribution (RTD) data of real reactors. In the current work, step input and pulse input were used to create RTD data for Cascade continuous stirred tank reactors (CSTRs). For the aforementioned configuration, experiments were run at various flow rates to validate the developed characteristic equations. To produce RTD data, distilled water was utilized as the flowing fluid, and NaOH was the tracer substance. The ideal behavior of tracer concentration exits age distribution, and cumulative fraction for each setup and each input was plotted and experimental results were compared with perfect behavior. Deviation of concentration exit age distribution and cumulative fractional distribution from ideal behavior is more in pulse input as compared to a step input. For ideal cases, the exit age distribution curve and cumulative fraction curves are independent of the type of input. But a significant difference was observed for the two cases, which may be due to non-measurable fluctuations in volumetric flow rate, non-achievement of instant injection of tracer in case of pulse input, and slight variations in the sampling period. Further, with increasing flow rate, concentration, exit age, and cumulative fractional curves shifted upward, and this behavior matches with the actual case.
Keywords
Publishing Year
Date Published
2023-03-20
Journal Title
Materials Today: Proceedings
Volume
78
Issue
Part 1
Page
40-47
ISSN
IST-REx-ID

Cite this

Khatoon B, Kamil S, Babu H, Siraj Alam M. Experimental analysis of Cascade CSTRs with step and pulse inputs. Materials Today: Proceedings. 2023;78(Part 1):40-47. doi:10.1016/j.matpr.2022.11.037
Khatoon, B., Kamil, S., Babu, H., & Siraj Alam, M. (2023). Experimental analysis of Cascade CSTRs with step and pulse inputs. Materials Today: Proceedings. Elsevier. https://doi.org/10.1016/j.matpr.2022.11.037
Khatoon, Bushra, Shoaib Kamil, Hitesh Babu, and M. Siraj Alam. “Experimental Analysis of Cascade CSTRs with Step and Pulse Inputs.” Materials Today: Proceedings. Elsevier, 2023. https://doi.org/10.1016/j.matpr.2022.11.037.
B. Khatoon, S. Kamil, H. Babu, and M. Siraj Alam, “Experimental analysis of Cascade CSTRs with step and pulse inputs,” Materials Today: Proceedings, vol. 78, no. Part 1. Elsevier, pp. 40–47, 2023.
Khatoon B, Kamil S, Babu H, Siraj Alam M. 2023. Experimental analysis of Cascade CSTRs with step and pulse inputs. Materials Today: Proceedings. 78(Part 1), 40–47.
Khatoon, Bushra, et al. “Experimental Analysis of Cascade CSTRs with Step and Pulse Inputs.” Materials Today: Proceedings, vol. 78, no. Part 1, Elsevier, 2023, pp. 40–47, doi:10.1016/j.matpr.2022.11.037.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar