Directional extremal statistics for Ginibre eigenvalues
Cipolloni G, Erdös L, Schröder DJ, Xu Y. 2022. Directional extremal statistics for Ginibre eigenvalues. Journal of Mathematical Physics. 63(10), 103303.
Download
Journal Article
| Published
| English
Scopus indexed
Department
Abstract
We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the region of the complex plane where their real parts reach their maximum value. This maximum follows the Gumbel distribution and that these extreme eigenvalues form a Poisson point process as the dimension asymptotically tends to infinity. In the complex case, these facts have already been established by Bender [Probab. Theory Relat. Fields 147, 241 (2010)] and in the real case by Akemann and Phillips [J. Stat. Phys. 155, 421 (2014)] even for the more general elliptic ensemble with a sophisticated saddle point analysis. The purpose of this article is to give a very short direct proof in the Ginibre case with an effective error term. Moreover, our estimates on the correlation kernel in this regime serve as a key input for accurately locating [Formula: see text] for any large matrix X with i.i.d. entries in the companion paper [G. Cipolloni et al., arXiv:2206.04448 (2022)].
Publishing Year
Date Published
2022-10-14
Journal Title
Journal of Mathematical Physics
Acknowledgement
The authors are grateful to G. Akemann for bringing Refs. 19 and 24–26 to their attention. Discussions with Guillaume Dubach on a preliminary version of this project are acknowledged.
L.E. and Y.X. were supported by the ERC Advanced Grant “RMTBeyond” under Grant No. 101020331. D.S. was supported by Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
Volume
63
Issue
10
Article Number
103303
ISSN
eISSN
IST-REx-ID
Cite this
Cipolloni G, Erdös L, Schröder DJ, Xu Y. Directional extremal statistics for Ginibre eigenvalues. Journal of Mathematical Physics. 2022;63(10). doi:10.1063/5.0104290
Cipolloni, G., Erdös, L., Schröder, D. J., & Xu, Y. (2022). Directional extremal statistics for Ginibre eigenvalues. Journal of Mathematical Physics. AIP Publishing. https://doi.org/10.1063/5.0104290
Cipolloni, Giorgio, László Erdös, Dominik J Schröder, and Yuanyuan Xu. “Directional Extremal Statistics for Ginibre Eigenvalues.” Journal of Mathematical Physics. AIP Publishing, 2022. https://doi.org/10.1063/5.0104290.
G. Cipolloni, L. Erdös, D. J. Schröder, and Y. Xu, “Directional extremal statistics for Ginibre eigenvalues,” Journal of Mathematical Physics, vol. 63, no. 10. AIP Publishing, 2022.
Cipolloni G, Erdös L, Schröder DJ, Xu Y. 2022. Directional extremal statistics for Ginibre eigenvalues. Journal of Mathematical Physics. 63(10), 103303.
Cipolloni, Giorgio, et al. “Directional Extremal Statistics for Ginibre Eigenvalues.” Journal of Mathematical Physics, vol. 63, no. 10, 103303, AIP Publishing, 2022, doi:10.1063/5.0104290.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2023-01-30
MD5 Checksum
2db278ae5b07f345a7e3fec1f92b5c33
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2206.04443