Sequential and additive expression of miR-9 precursors control timing of neurogenesis
Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. 2022. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 149(19), dev200474.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Soto, Ximena;
Burton, Joshua;
Manning, Cerys S.;
Minchington, ThomasISTA;
Lea, Robert;
Lee, Jessica;
Kursawe, Jochen;
Rattray, Magnus;
Papalopulu, Nancy
Department
Abstract
MicroRNAs (miRs) have an important role in tuning dynamic gene expression. However, the mechanism by which they are quantitatively controlled is unknown. We show that the amount of mature miR-9, a key regulator of neuronal development, increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of seven distinct microRNA primary transcripts (pri-mir)-9s that produce the same mature miR-9 and show that they are sequentially expressed during hindbrain neurogenesis. Expression of late-onset pri-mir-9-1 is added on to, rather than replacing, the expression of early onset pri-mir-9-4 and -9-5 in single cells. CRISPR/Cas9 mutation of the late-onset pri-mir-9-1 prevents the developmental increase of mature miR-9, reduces late neuronal differentiation and fails to downregulate Her6 at late stages. Mathematical modelling shows that an adaptive network containing Her6 is insensitive to linear increases in miR-9 but responds to stepwise increases of miR-9. We suggest that a sharp stepwise increase of mature miR-9 is created by sequential and additive temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition of Her6 to a new dynamic regime or steady state.
Keywords
Publishing Year
Date Published
2022-10-01
Journal Title
Development
Publisher
The Company of Biologists
Acknowledgement
We are grateful to Dr Tom Pettini for the advice on smiFISH technique and Dr Laure Bally-Cuif for sharing plasmids. The authors also thank the Biological Services Facility, Bioimaging and Systems Microscopy Facilities of the University of Manchester for technical support.
This work was supported by a Wellcome Trust Senior Research Fellowship (090868/Z/09/Z) and a Wellcome Trust Investigator Award (224394/Z/21/Z) to N.P. and a Medical Research Council Career Development Award to C.S.M. (MR/V032534/1). J.B. was supported by a Wellcome Trust Four-Year PhD Studentship in Basic Science (219992/Z/19/Z). Open Access funding provided by The University of Manchester. Deposited in PMC for immediate release.
Volume
149
Issue
19
Article Number
dev200474
ISSN
eISSN
IST-REx-ID
Cite this
Soto X, Burton J, Manning CS, et al. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 2022;149(19). doi:10.1242/dev.200474
Soto, X., Burton, J., Manning, C. S., Minchington, T., Lea, R., Lee, J., … Papalopulu, N. (2022). Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. The Company of Biologists. https://doi.org/10.1242/dev.200474
Soto, Ximena, Joshua Burton, Cerys S. Manning, Thomas Minchington, Robert Lea, Jessica Lee, Jochen Kursawe, Magnus Rattray, and Nancy Papalopulu. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development. The Company of Biologists, 2022. https://doi.org/10.1242/dev.200474.
X. Soto et al., “Sequential and additive expression of miR-9 precursors control timing of neurogenesis,” Development, vol. 149, no. 19. The Company of Biologists, 2022.
Soto X, Burton J, Manning CS, Minchington T, Lea R, Lee J, Kursawe J, Rattray M, Papalopulu N. 2022. Sequential and additive expression of miR-9 precursors control timing of neurogenesis. Development. 149(19), dev200474.
Soto, Ximena, et al. “Sequential and Additive Expression of MiR-9 Precursors Control Timing of Neurogenesis.” Development, vol. 149, no. 19, dev200474, The Company of Biologists, 2022, doi:10.1242/dev.200474.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2022_Development_Soto.pdf
9.35 MB
Access Level
Open Access
Date Uploaded
2023-01-30
MD5 Checksum
d7c29b74e9e4032308228cc704a30e88
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 36189829
PubMed | Europe PMC