Social balance on networks: Local minima and best-edge dynamics

Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. 2022. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 106(3), 034321.


Journal Article | Published | English

Scopus indexed
Department
Abstract
Structural balance theory is an established framework for studying social relationships of friendship and enmity. These relationships are modeled by a signed network whose energy potential measures the level of imbalance, while stochastic dynamics drives the network toward a state of minimum energy that captures social balance. It is known that this energy landscape has local minima that can trap socially aware dynamics, preventing it from reaching balance. Here we first study the robustness and attractor properties of these local minima. We show that a stochastic process can reach them from an abundance of initial states and that some local minima cannot be escaped by mild perturbations of the network. Motivated by these anomalies, we introduce best-edge dynamics (BED), a new plausible stochastic process. We prove that BED always reaches balance and that it does so fast in various interesting settings.
Publishing Year
Date Published
2022-09-29
Journal Title
Physical Review E
Acknowledgement
K.C. acknowledges support from ERC Start Grant No. (279307: Graph Games), ERC Consolidator Grant No. (863818: ForM-SMart), and Austrian Science Fund (FWF) Grants No. P23499-N23 and No. S11407-N23 (RiSE). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.
Volume
106
Issue
3
Article Number
034321
ISSN
eISSN
IST-REx-ID

Cite this

Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 2022;106(3). doi:10.1103/physreve.106.034321
Chatterjee, K., Svoboda, J., Zikelic, D., Pavlogiannis, A., & Tkadlec, J. (2022). Social balance on networks: Local minima and best-edge dynamics. Physical Review E. American Physical Society. https://doi.org/10.1103/physreve.106.034321
Chatterjee, Krishnendu, Jakub Svoboda, Dorde Zikelic, Andreas Pavlogiannis, and Josef Tkadlec. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E. American Physical Society, 2022. https://doi.org/10.1103/physreve.106.034321.
K. Chatterjee, J. Svoboda, D. Zikelic, A. Pavlogiannis, and J. Tkadlec, “Social balance on networks: Local minima and best-edge dynamics,” Physical Review E, vol. 106, no. 3. American Physical Society, 2022.
Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. 2022. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 106(3), 034321.
Chatterjee, Krishnendu, et al. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E, vol. 106, no. 3, 034321, American Physical Society, 2022, doi:10.1103/physreve.106.034321.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2210.02394

Search this title in

Google Scholar