Social balance on networks: Local minima and best-edge dynamics
Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. 2022. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 106(3), 034321.
Download (ext.)
https://doi.org/10.48550/arXiv.2210.02394
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Department
Grant
Abstract
Structural balance theory is an established framework for studying social relationships of friendship and enmity. These relationships are modeled by a signed network whose energy potential measures the level of imbalance, while stochastic dynamics drives the network toward a state of minimum energy that captures social balance. It is known that this energy landscape has local minima that can trap socially aware dynamics, preventing it from reaching balance. Here we first study the robustness and attractor properties of these local minima. We show that a stochastic process can reach them from an abundance of initial states and that some local minima cannot be escaped by mild perturbations of the network. Motivated by these anomalies, we introduce best-edge dynamics (BED), a new plausible stochastic process. We prove that BED always reaches balance and that it does so fast in various interesting settings.
Publishing Year
Date Published
2022-09-29
Journal Title
Physical Review E
Publisher
American Physical Society
Acknowledgement
K.C. acknowledges support from ERC Start Grant No. (279307: Graph Games), ERC Consolidator Grant No. (863818: ForM-SMart), and Austrian Science Fund (FWF)
Grants No. P23499-N23 and No. S11407-N23 (RiSE). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 665385.
Volume
106
Issue
3
Article Number
034321
ISSN
eISSN
IST-REx-ID
Cite this
Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 2022;106(3). doi:10.1103/physreve.106.034321
Chatterjee, K., Svoboda, J., Zikelic, D., Pavlogiannis, A., & Tkadlec, J. (2022). Social balance on networks: Local minima and best-edge dynamics. Physical Review E. American Physical Society. https://doi.org/10.1103/physreve.106.034321
Chatterjee, Krishnendu, Jakub Svoboda, Dorde Zikelic, Andreas Pavlogiannis, and Josef Tkadlec. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E. American Physical Society, 2022. https://doi.org/10.1103/physreve.106.034321.
K. Chatterjee, J. Svoboda, D. Zikelic, A. Pavlogiannis, and J. Tkadlec, “Social balance on networks: Local minima and best-edge dynamics,” Physical Review E, vol. 106, no. 3. American Physical Society, 2022.
Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. 2022. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 106(3), 034321.
Chatterjee, Krishnendu, et al. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E, vol. 106, no. 3, 034321, American Physical Society, 2022, doi:10.1103/physreve.106.034321.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2210.02394