Imaging of electric and magnetic fields near plasmonic nanowires
Kabakova I, De Hoogh A, Van Der Wel R, Wulf M, Le Feber B, Kuipers L. 2016. Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. 6, 22665.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Kabakova, Irina;
De Hoogh, Anouk;
Van Der Wel, Ruben;
Wulf, MatthiasISTA ;
Le Feber, Boris;
Kuipers, Laurens
Department
Abstract
Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire's evanescent field and the probe's response function. As a result, we find that the probe's sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments.
Publishing Year
Date Published
2016-03-07
Journal Title
Scientific Reports
Publisher
Nature Publishing Group
Acknowledgement
This work is supported part of the research program of the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO), and part of this work has been funded by the project ‘SPANGL4Q’, which acknowledges the financial support of the Future and Emerging Technologies (FET) program within the Seventh Framework Programme for Research of the European Commission, under FETOpen grant number: FP7-284743. L.K. acknowledges funding from ERC Advanced, Investigator Grant (no. 240438-CONSTANS).
Volume
6
Article Number
22665
IST-REx-ID
Cite this
Kabakova I, De Hoogh A, Van Der Wel R, Wulf M, Le Feber B, Kuipers L. Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. 2016;6. doi:10.1038/srep22665
Kabakova, I., De Hoogh, A., Van Der Wel, R., Wulf, M., Le Feber, B., & Kuipers, L. (2016). Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep22665
Kabakova, Irina, Anouk De Hoogh, Ruben Van Der Wel, Matthias Wulf, Boris Le Feber, and Laurens Kuipers. “Imaging of Electric and Magnetic Fields near Plasmonic Nanowires.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep22665.
I. Kabakova, A. De Hoogh, R. Van Der Wel, M. Wulf, B. Le Feber, and L. Kuipers, “Imaging of electric and magnetic fields near plasmonic nanowires,” Scientific Reports, vol. 6. Nature Publishing Group, 2016.
Kabakova I, De Hoogh A, Van Der Wel R, Wulf M, Le Feber B, Kuipers L. 2016. Imaging of electric and magnetic fields near plasmonic nanowires. Scientific Reports. 6, 22665.
Kabakova, Irina, et al. “Imaging of Electric and Magnetic Fields near Plasmonic Nanowires.” Scientific Reports, vol. 6, 22665, Nature Publishing Group, 2016, doi:10.1038/srep22665.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
IST-2016-707-v1+1_srep22665.pdf
1.43 MB
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
ca76236cb1aae22cb90c65313e2c5e98