Functional central limit theorems for Wigner matrices
Cipolloni G, Erdös L, Schröder DJ. 2023. Functional central limit theorems for Wigner matrices. Annals of Applied Probability. 33(1), 447–489.
Download (ext.)
https://arxiv.org/abs/2012.13218
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Department
Abstract
We consider the fluctuations of regular functions f of a Wigner matrix W viewed as an entire matrix f (W). Going beyond the well-studied tracial mode, Trf (W), which is equivalent to the customary linear statistics of eigenvalues, we show that Trf (W)A is asymptotically normal for any nontrivial bounded deterministic matrix A. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of f (W) in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. As a main motivation to study CLT in such generality on small mesoscopic scales, we determine
the fluctuations in the eigenstate thermalization hypothesis (Phys. Rev. A 43 (1991) 2046–2049), that is, prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. Finally, in the macroscopic regime our result also generalizes (Zh. Mat. Fiz. Anal. Geom. 9 (2013) 536–581, 611, 615) to complex W and to all crossover ensembles in between. The main technical inputs are the recent
multiresolvent local laws with traceless deterministic matrices from the companion paper (Comm. Math. Phys. 388 (2021) 1005–1048).
Publishing Year
Date Published
2023-02-01
Journal Title
Annals of Applied Probability
Acknowledgement
The second author is partially funded by the ERC Advanced Grant “RMTBEYOND” No. 101020331. The third author is supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation.
Volume
33
Issue
1
Page
447-489
ISSN
IST-REx-ID
Cite this
Cipolloni G, Erdös L, Schröder DJ. Functional central limit theorems for Wigner matrices. Annals of Applied Probability. 2023;33(1):447-489. doi:10.1214/22-AAP1820
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Functional central limit theorems for Wigner matrices. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AAP1820
Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “Functional Central Limit Theorems for Wigner Matrices.” Annals of Applied Probability. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/22-AAP1820.
G. Cipolloni, L. Erdös, and D. J. Schröder, “Functional central limit theorems for Wigner matrices,” Annals of Applied Probability, vol. 33, no. 1. Institute of Mathematical Statistics, pp. 447–489, 2023.
Cipolloni G, Erdös L, Schröder DJ. 2023. Functional central limit theorems for Wigner matrices. Annals of Applied Probability. 33(1), 447–489.
Cipolloni, Giorgio, et al. “Functional Central Limit Theorems for Wigner Matrices.” Annals of Applied Probability, vol. 33, no. 1, Institute of Mathematical Statistics, 2023, pp. 447–89, doi:10.1214/22-AAP1820.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2012.13218