Curvature induces active velocity waves in rotating spherical tissues

Brandstätter T, Brückner D, Han YL, Alert R, Guo M, Broedersz CP. 2023. Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. 14, 1643.

Download
OA 2023_NatureComm_Brandstaetter.pdf 4.15 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Brandstätter, Tom; Brückner, DavidISTA ; Han, Yu Long; Alert, Ricard; Guo, Ming; Broedersz, Chase P.
Department
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Publishing Year
Date Published
2023-03-24
Journal Title
Nature Communications
Publisher
Springer Nature
Acknowledgement
We thank H. Abbaszadeh, M.J. Bowick, G. Gradziuk, M.C. Marchetti, and S. Shankar for their helpful discussions. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 201269156-SFB 1032 (Project B12). D.B.B. is a NOMIS fellow supported by the NOMIS foundation and was in part supported by a DFG fellowship within the Graduate School of Quantitative Biosciences Munich (QBM) and Joachim Herz Stiftung. R.A. acknowledges support from the Human Frontier Science Program (LT000475/2018-C) and from the National Science Foundation, through the Center for the Physics of Biological Function (PHY-1734030). M.G. acknowledges support from NIH R01GM140108 and Alfred Sloan Foundation. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 201269156-SFB 1032 (Project B12).Open Access funding enabled and organized by Projekt DEAL.
Volume
14
Article Number
1643
eISSN
IST-REx-ID

Cite this

Brandstätter T, Brückner D, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. 2023;14. doi:10.1038/s41467-023-37054-2
Brandstätter, T., Brückner, D., Han, Y. L., Alert, R., Guo, M., & Broedersz, C. P. (2023). Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-37054-2
Brandstätter, Tom, David Brückner, Yu Long Han, Ricard Alert, Ming Guo, and Chase P. Broedersz. “Curvature Induces Active Velocity Waves in Rotating Spherical Tissues.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-37054-2.
T. Brandstätter, D. Brückner, Y. L. Han, R. Alert, M. Guo, and C. P. Broedersz, “Curvature induces active velocity waves in rotating spherical tissues,” Nature Communications, vol. 14. Springer Nature, 2023.
Brandstätter T, Brückner D, Han YL, Alert R, Guo M, Broedersz CP. 2023. Curvature induces active velocity waves in rotating spherical tissues. Nature Communications. 14, 1643.
Brandstätter, Tom, et al. “Curvature Induces Active Velocity Waves in Rotating Spherical Tissues.” Nature Communications, vol. 14, 1643, Springer Nature, 2023, doi:10.1038/s41467-023-37054-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-04-11
MD5 Checksum
54f06f9eee11d43bab253f3492c983ba


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 36964141
PubMed | Europe PMC

Search this title in

Google Scholar