Rotation control, interlocking, and self‐positioning of active cogwheels

Martinet Q, Aubret A, Palacci JA. 2023. Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. 5(1), 2200129.

Download
OA 2023_AdvancedIntelligentSystems_Martinet.pdf 2.41 MB [Published Version]

Journal Article | Published | English

Corresponding author has ISTA affiliation

Department
Abstract
Gears and cogwheels are elemental components of machines. They restrain degrees of freedom and channel power into a specified motion. Building and powering small-scale cogwheels are key steps toward feasible micro and nanomachinery. Assembly, energy injection, and control are, however, a challenge at the microscale. In contrast with passive gears, whose function is to transmit torques from one to another, interlocking and untethered active gears have the potential to unveil dynamics and functions untapped by externally driven mechanisms. Here, it is shown the assembly and control of a family of self-spinning cogwheels with varying teeth numbers and study the interlocking of multiple cogwheels. The teeth are formed by colloidal microswimmers that power the structure. The cogwheels are autonomous and active, showing persistent rotation. Leveraging the angular momentum of optical vortices, we control the direction of rotation of the cogwheels. The pairs of interlocking and active cogwheels that roll over each other in a random walk and have curvature-dependent mobility are studied. This behavior is leveraged to self-position parts and program microbots, demonstrating the ability to pick up, direct, and release a load. The work constitutes a step toward autonomous machinery with external control as well as (re)programmable microbots and matter.
Publishing Year
Date Published
2023-01-01
Journal Title
Advanced Intelligent Systems
Publisher
Wiley
Acknowledgement
Army Research Office. Grant Number: W911NF-20-1-0112
Volume
5
Issue
1
Article Number
2200129
ISSN
IST-REx-ID

Cite this

Martinet Q, Aubret A, Palacci JA. Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. 2023;5(1). doi:10.1002/aisy.202200129
Martinet, Q., Aubret, A., & Palacci, J. A. (2023). Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. Wiley. https://doi.org/10.1002/aisy.202200129
Martinet, Quentin, Antoine Aubret, and Jérémie A Palacci. “Rotation Control, Interlocking, and Self‐positioning of Active Cogwheels.” Advanced Intelligent Systems. Wiley, 2023. https://doi.org/10.1002/aisy.202200129.
Q. Martinet, A. Aubret, and J. A. Palacci, “Rotation control, interlocking, and self‐positioning of active cogwheels,” Advanced Intelligent Systems, vol. 5, no. 1. Wiley, 2023.
Martinet Q, Aubret A, Palacci JA. 2023. Rotation control, interlocking, and self‐positioning of active cogwheels. Advanced Intelligent Systems. 5(1), 2200129.
Martinet, Quentin, et al. “Rotation Control, Interlocking, and Self‐positioning of Active Cogwheels.” Advanced Intelligent Systems, vol. 5, no. 1, 2200129, Wiley, 2023, doi:10.1002/aisy.202200129.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-04-17
MD5 Checksum
d48fc41d39892e7fa0d44cb352dd46aa


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2201.03333

Search this title in

Google Scholar