The classification of endoscopy images with persistent homology

Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, Kashin S. 2016. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 83(1), 13–22.

Download
OA 2016-Edelsbrunner_The_classification.pdf 1.92 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Dunaeva, Olga; Edelsbrunner, HerbertISTA ; Lukyanov, Anton; Machin, Michael; Malkova, Daria; Kuvaev, Roman; Kashin, Sergey
Department
Abstract
Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
Publishing Year
Date Published
2016-11-01
Journal Title
Pattern Recognition Letters
Publisher
Elsevier
Volume
83
Issue
1
Page
13 - 22
IST-REx-ID

Cite this

Dunaeva O, Edelsbrunner H, Lukyanov A, et al. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 2016;83(1):13-22. doi:10.1016/j.patrec.2015.12.012
Dunaeva, O., Edelsbrunner, H., Lukyanov, A., Machin, M., Malkova, D., Kuvaev, R., & Kashin, S. (2016). The classification of endoscopy images with persistent homology. Pattern Recognition Letters. Elsevier. https://doi.org/10.1016/j.patrec.2015.12.012
Dunaeva, Olga, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova, Roman Kuvaev, and Sergey Kashin. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters. Elsevier, 2016. https://doi.org/10.1016/j.patrec.2015.12.012.
O. Dunaeva et al., “The classification of endoscopy images with persistent homology,” Pattern Recognition Letters, vol. 83, no. 1. Elsevier, pp. 13–22, 2016.
Dunaeva O, Edelsbrunner H, Lukyanov A, Machin M, Malkova D, Kuvaev R, Kashin S. 2016. The classification of endoscopy images with persistent homology. Pattern Recognition Letters. 83(1), 13–22.
Dunaeva, Olga, et al. “The Classification of Endoscopy Images with Persistent Homology.” Pattern Recognition Letters, vol. 83, no. 1, Elsevier, 2016, pp. 13–22, doi:10.1016/j.patrec.2015.12.012.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-04-17
MD5 Checksum
33458bbb8c32a339e1adeca6d5a1112d


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar