Stochastic cellular automaton model of culture formation

Klausen FR, Lauritsen AB. 2023. Stochastic cellular automaton model of culture formation. Physical Review E. 108(5), 054307.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Klausen, Frederik Ravn; Lauritsen, Asbjørn BækgaardISTA
Abstract
We introduce a stochastic cellular automaton as a model for culture and border formation. The model can be conceptualized as a game where the expansion rate of cultures is quantified in terms of their area and perimeter in such a way that approximately geometrically round cultures get a competitive advantage. We first analyze the model with periodic boundary conditions, where we study how the model can end up in a fixed state, i.e., freezes. Then we implement the model on the European geography with mountains and rivers. We see how the model reproduces some qualitative features of European culture formation, namely, that rivers and mountains are more frequently borders between cultures, mountainous regions tend to have higher cultural diversity, and the central European plain has less clear cultural borders.
Publishing Year
Date Published
2023-11-08
Journal Title
Physical Review E
Acknowledgement
Thanks to Kim Sneppen, Svend Krøjer, Peter Wildemann, Peter Rasmussen and Kent Bækgaard Lauritsen for discussions and suggestions. FRK acknowledges support from the Villum Foundation for support through the QMATH center of Excellence (Grant No. 10059) and the Villum Young Investigator (Grant No. 25452) programs.
Volume
108
Issue
5
Article Number
054307
ISSN
eISSN
IST-REx-ID

Cite this

Klausen FR, Lauritsen AB. Stochastic cellular automaton model of culture formation. Physical Review E. 2023;108(5). doi:10.1103/PhysRevE.108.054307
Klausen, F. R., & Lauritsen, A. B. (2023). Stochastic cellular automaton model of culture formation. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.108.054307
Klausen, Frederik Ravn, and Asbjørn Bækgaard Lauritsen. “Stochastic Cellular Automaton Model of Culture Formation.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.108.054307.
F. R. Klausen and A. B. Lauritsen, “Stochastic cellular automaton model of culture formation,” Physical Review E, vol. 108, no. 5. American Physical Society, 2023.
Klausen FR, Lauritsen AB. 2023. Stochastic cellular automaton model of culture formation. Physical Review E. 108(5), 054307.
Klausen, Frederik Ravn, and Asbjørn Bækgaard Lauritsen. “Stochastic Cellular Automaton Model of Culture Formation.” Physical Review E, vol. 108, no. 5, 054307, American Physical Society, 2023, doi:10.1103/PhysRevE.108.054307.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2305.02153

Search this title in

Google Scholar