Ab initio calculation of the reflectivity of molecular fluids under shock compression

French M, Bethkenhagen M, Ravasio A, Hernandez JA. 2023. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 107(13), 134109.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
French, Martin; Bethkenhagen, MandyISTA ; Ravasio, Alessandra; Hernandez, Jean Alexis
Department
Abstract
We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression.
Publishing Year
Date Published
2023-04-01
Journal Title
Physical Review B
Acknowledgement
We thank R. Redmer for helpful discussions. M.F. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the FOR 2440. M.B. gratefully acknowledges support by the European Horizon 2020 programme within the Marie Skłodowska-Curie actions (xICE Grant No. 894725) and the NOMIS foundation. A.R. and J.-A.H. acknowledge support form the French National Research Agency (ANR) through the projects POMPEI (Grant No. ANR-16-CE31-0008) and SUPER-ICES (Grant No. ANR-15-CE30-008-01). The ab initio calculations were performed at the NorthGerman Supercomputing Alliance (HLRN) facilities.
Volume
107
Issue
13
Article Number
134109
ISSN
eISSN
IST-REx-ID

Cite this

French M, Bethkenhagen M, Ravasio A, Hernandez JA. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 2023;107(13). doi:10.1103/PhysRevB.107.134109
French, M., Bethkenhagen, M., Ravasio, A., & Hernandez, J. A. (2023). Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.134109
French, Martin, Mandy Bethkenhagen, Alessandra Ravasio, and Jean Alexis Hernandez. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.134109.
M. French, M. Bethkenhagen, A. Ravasio, and J. A. Hernandez, “Ab initio calculation of the reflectivity of molecular fluids under shock compression,” Physical Review B, vol. 107, no. 13. American Physical Society, 2023.
French M, Bethkenhagen M, Ravasio A, Hernandez JA. 2023. Ab initio calculation of the reflectivity of molecular fluids under shock compression. Physical Review B. 107(13), 134109.
French, Martin, et al. “Ab Initio Calculation of the Reflectivity of Molecular Fluids under Shock Compression.” Physical Review B, vol. 107, no. 13, 134109, American Physical Society, 2023, doi:10.1103/PhysRevB.107.134109.

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar