Tunable directional photon scattering from a pair of superconducting qubits
Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Redchenko, ElenaISTA;
Poshakinskiy, Alexander V.;
Sett, RiyaISTA;
Zemlicka, MartinISTA;
Poddubny, Alexander N.;
Fink, Johannes MISTA
Corresponding author has ISTA affiliation
Department
Grant
Abstract
The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality.
Publishing Year
Date Published
2023-05-24
Journal Title
Nature Communications
Publisher
Springer Nature
Acknowledgement
The authors thank W.D. Oliver for discussions, L. Drmic and P. Zielinski for software development, and the MIBA workshop and the IST nanofabrication facility for technical support. This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105) and IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. and M.Z. acknowledge support from the European Research Council under grant agreement No 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. The work of A.N.P. and A.V.P. has been supported by the Russian Science Foundation under the grant No 20-12-00194.
Acknowledged SSUs
Volume
14
Article Number
2998
eISSN
IST-REx-ID
Cite this
Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 2023;14. doi:10.1038/s41467-023-38761-6
Redchenko, E., Poshakinskiy, A. V., Sett, R., Zemlicka, M., Poddubny, A. N., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38761-6
Redchenko, Elena, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38761-6.
E. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits,” Nature Communications, vol. 14. Springer Nature, 2023.
Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998.
Redchenko, Elena, et al. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications, vol. 14, 2998, Springer Nature, 2023, doi:10.1038/s41467-023-38761-6.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2023_NaturePhysics_Redchenko.pdf
1.65 MB
Access Level
Open Access
Date Uploaded
2023-06-06
MD5 Checksum
a857df40f0882859c48a1ff1e2001ec2
Material in ISTA:
Research Data
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2205.03293