Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain
Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312.
Download (ext.)
https://doi.org/10.48550/arXiv.2303.00729
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Orlov, Pavel;
Tiutiakina, Anastasiia;
Sharipov, Rustem;
Petrova, ElenaISTA;
Gritsev, Vladimir;
Kurlov, Denis V.
Department
Abstract
We consider the spin-
1
2
Heisenberg chain (XXX model) weakly perturbed away from integrability by an isotropic next-to-nearest neighbor exchange interaction. Recently, it was conjectured that this model possesses an infinite tower of quasiconserved integrals of motion (charges) [D. Kurlov et al., Phys. Rev. B 105, 104302 (2022)]. In this work we first test this conjecture by investigating how the norm of the adiabatic gauge potential (AGP) scales with the system size, which is known to be a remarkably accurate measure of chaos. We find that for the perturbed XXX chain the behavior of the AGP norm corresponds to neither an integrable nor a chaotic regime, which supports the conjectured quasi-integrability of the model. We then prove the conjecture and explicitly construct the infinite set of quasiconserved charges. Our proof relies on the fact that the XXX chain perturbed by next-to-nearest exchange interaction can be viewed as a truncation of an integrable long-range deformation of the Heisenberg spin chain.
Publishing Year
Date Published
2023-05-01
Journal Title
Physical Review B
Publisher
American Physical Society
Acknowledgement
The numerical computations in this work were performed using QuSpin [83, 84]. We acknowledge useful discussions with Igor Aleiner, Boris Altshuler, Jacopo de Nardis, Anatoli Polkovnikov, and Gora Shlyapnikov. We thank Piotr Sierant and Dario Rosa for drawing our attention to Refs. [31, 42, 46] and Ref. [47], respectively. We are grateful to an anonymous referee for very useful comments and for drawing our attention to Refs. [80, 81]. The work of VG is part of the DeltaITP consortium, a program of the Netherlands Organization for Scientific
Research (NWO) funded by the Dutch Ministry of Education, Culture and Science (OCW). VG is also partially supported by RSF 19-71-10092. The work of AT was supported by the ERC Starting Grant 101042293 (HEPIQ). RS acknowledges support from Slovenian Research Agency (ARRS) - research programme P1-0402.
Volume
107
Issue
18
Article Number
184312
ISSN
eISSN
IST-REx-ID
Cite this
Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 2023;107(18). doi:10.1103/PhysRevB.107.184312
Orlov, P., Tiutiakina, A., Sharipov, R., Petrova, E., Gritsev, V., & Kurlov, D. V. (2023). Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.184312
Orlov, Pavel, Anastasiia Tiutiakina, Rustem Sharipov, Elena Petrova, Vladimir Gritsev, and Denis V. Kurlov. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.184312.
P. Orlov, A. Tiutiakina, R. Sharipov, E. Petrova, V. Gritsev, and D. V. Kurlov, “Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain,” Physical Review B, vol. 107, no. 18. American Physical Society, 2023.
Orlov P, Tiutiakina A, Sharipov R, Petrova E, Gritsev V, Kurlov DV. 2023. Adiabatic eigenstate deformations and weak integrability breaking of Heisenberg chain. Physical Review B. 107(18), 184312.
Orlov, Pavel, et al. “Adiabatic Eigenstate Deformations and Weak Integrability Breaking of Heisenberg Chain.” Physical Review B, vol. 107, no. 18, 184312, American Physical Society, 2023, doi:10.1103/PhysRevB.107.184312.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2303.00729