The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy

Wang L, Gies DR, Peters GJ, Götberg YLL, Chojnowski SD, Lester KV, Howell SB. 2021. The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. 161(5), 248.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Wang, Luqian; Gies, Douglas R.; Peters, Geraldine J.; Götberg, Ylva Louise LinsdotterISTA ; Chojnowski, S. Drew; Lester, Kathryn V.; Howell, Steve B.
Abstract
The B emission-line stars are rapid rotators that were probably spun up by mass and angular momentum accretion through mass transfer in an interacting binary. Mass transfer will strip the donor star of its envelope to create a small and hot subdwarf remnant. Here we report on Hubble Space Telescope/STIS far-ultraviolet spectroscopy of a sample of Be stars that reveals the presence of the hot sdO companion through the calculation of cross-correlation functions of the observed and model spectra. We clearly detect the spectral signature of the sdO star in 10 of the 13 stars in the sample, and the spectral signals indicate that the sdO stars are hot, relatively faint, and slowly rotating as predicted by models. A comparison of their temperatures and radii with evolutionary tracks indicates that the sdO stars occupy the relatively long-lived, He-core burning stage. Only 1 of the 10 detections was a known binary prior to this investigation, which emphasizes the difficulty of finding such Be+sdO binaries through optical spectroscopy. However, these results and others indicate that many Be stars probably host hot subdwarf companions.
Publishing Year
Date Published
2021-05-04
Journal Title
The Astronomical Journal
Publisher
American Astronomical Society
Volume
161
Issue
5
Article Number
248
ISSN
eISSN
IST-REx-ID

Cite this

Wang L, Gies DR, Peters GJ, et al. The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. 2021;161(5). doi:10.3847/1538-3881/abf144
Wang, L., Gies, D. R., Peters, G. J., Götberg, Y. L. L., Chojnowski, S. D., Lester, K. V., & Howell, S. B. (2021). The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. American Astronomical Society. https://doi.org/10.3847/1538-3881/abf144
Wang, Luqian, Douglas R. Gies, Geraldine J. Peters, Ylva Louise Linsdotter Götberg, S. Drew Chojnowski, Kathryn V. Lester, and Steve B. Howell. “The Detection and Characterization of Be+sdO Binaries from HST/STIS FUV Spectroscopy.” The Astronomical Journal. American Astronomical Society, 2021. https://doi.org/10.3847/1538-3881/abf144.
L. Wang et al., “The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy,” The Astronomical Journal, vol. 161, no. 5. American Astronomical Society, 2021.
Wang L, Gies DR, Peters GJ, Götberg YLL, Chojnowski SD, Lester KV, Howell SB. 2021. The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. 161(5), 248.
Wang, Luqian, et al. “The Detection and Characterization of Be+sdO Binaries from HST/STIS FUV Spectroscopy.” The Astronomical Journal, vol. 161, no. 5, 248, American Astronomical Society, 2021, doi:10.3847/1538-3881/abf144.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2103.13642

Search this title in

Google Scholar