Learning with attributes for object recognition: Parametric and non-parametrics views
Sharmanska V. 2015. Learning with attributes for object recognition: Parametric and non-parametrics views. Institute of Science and Technology Austria.
Download
URL
http://users.sussex.ac.uk/~nq28/viktoriia/Thesis_Sharmanska.pdf
[Published Version]
Thesis
| PhD
| Published
| English
Author
Supervisor
Department
Series Title
ISTA Thesis
Abstract
The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent successful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views.
Publishing Year
Date Published
2015-04-01
Acknowledgement
I would like to thank my supervisor, Christoph Lampert, for guidance throughout my studies and for patience in transforming me into a scientist, and my thesis committee, Chris Wojtan and Horst Bischof, for their help and advice.
I would like to thank Elisabeth Hacker who perfectly assisted all my administrative needs and was always nice and friendly to me, and the campus team for making the IST Austria campus my second home.
I was honored to collaborate with brilliant researchers and to learn from their experience. Undoubtedly, I learned most of all from Novi Quadrianto: brainstorming our projects and getting exciting results was the most enjoyable part of my work – thank you! I am also grateful to David Knowles, Zoubin Ghahramani, Daniel Hernández-Lobato, Kristian Kersting and Anastasia Pentina for the fantastic projects we worked on together, and to Kristen Grauman and Adriana Kovashka for the exceptional experience working with user studies. I would like to thank my colleagues at IST Austria and my office mates who shared their happy moods, scientific breakthroughs and thought-provoking conversations with me: Chao, Filip, Rustem, Asya, Sameh, Alex, Vlad, Mayu, Neel, Csaba, Thomas, Vladimir, Cristina, Alex Z., Avro, Amelie and Emilie, Andreas H. and Andreas E., Chris, Lena, Michael, Ali and Ipek, Vera, Igor, Katia. Special thanks to Morten for the countless games of table soccer we played together and the tournaments we teamed up for: we will definitely win next time:) A very warm hug to Asya for always being so inspiring and supportive to me, and for helping me to increase the proportion of female computer scientists in our group.
Page
144
ISSN
IST-REx-ID
Cite this
Sharmanska V. Learning with attributes for object recognition: Parametric and non-parametrics views. 2015. doi:10.15479/at:ista:1401
Sharmanska, V. (2015). Learning with attributes for object recognition: Parametric and non-parametrics views. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:1401
Sharmanska, Viktoriia. “Learning with Attributes for Object Recognition: Parametric and Non-Parametrics Views.” Institute of Science and Technology Austria, 2015. https://doi.org/10.15479/at:ista:1401.
V. Sharmanska, “Learning with attributes for object recognition: Parametric and non-parametrics views,” Institute of Science and Technology Austria, 2015.
Sharmanska V. 2015. Learning with attributes for object recognition: Parametric and non-parametrics views. Institute of Science and Technology Austria.
Sharmanska, Viktoriia. Learning with Attributes for Object Recognition: Parametric and Non-Parametrics Views. Institute of Science and Technology Austria, 2015, doi:10.15479/at:ista:1401.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
2015_Thesis_Sharmanska.pdf
7.96 MB
Access Level
Open Access
Date Uploaded
2021-02-22
MD5 Checksum
3605b402bb6934e09ae4cf672c84baf7
File Name
2015_Thesis_Sharmanska_pdfa.pdf
7.37 MB
Access Level
Closed Access
Date Uploaded
2021-11-16
MD5 Checksum
e37593b3ee75bf3180629df2d6ca8f4e
Link(s) to Main File(s)
Access Level
Closed Access