Toward causal representation learning

Scholkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y. 2021. Toward causal representation learning. Proceedings of the IEEE. 109(5), 612–634.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Scholkopf, Bernhard; Locatello, FrancescoISTA ; Bauer, Stefan; Ke, Nan Rosemary; Kalchbrenner, Nal; Goyal, Anirudh; Bengio, Yoshua
Department
Abstract
The two fields of machine learning and graphical causality arose and are developed separately. However, there is, now, cross-pollination and increasing interest in both fields to benefit from the advances of the other. In this article, we review fundamental concepts of causal inference and relate them to crucial open problems of machine learning, including transfer and generalization, thereby assaying how causality can contribute to modern machine learning research. This also applies in the opposite direction: we note that most work in causality starts from the premise that the causal variables are given. A central problem for AI and causality is, thus, causal representation learning, that is, the discovery of high-level causal variables from low-level observations. Finally, we delineate some implications of causality for machine learning and propose key research areas at the intersection of both communities.
Publishing Year
Date Published
2021-05-01
Journal Title
Proceedings of the IEEE
Publisher
Institute of Electrical and Electronics Engineers
Volume
109
Issue
5
Page
612-634
ISSN
eISSN
IST-REx-ID

Cite this

Scholkopf B, Locatello F, Bauer S, et al. Toward causal representation learning. Proceedings of the IEEE. 2021;109(5):612-634. doi:10.1109/jproc.2021.3058954
Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/jproc.2021.3058954
Scholkopf, Bernhard, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. “Toward Causal Representation Learning.” Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/jproc.2021.3058954.
B. Scholkopf et al., “Toward causal representation learning,” Proceedings of the IEEE, vol. 109, no. 5. Institute of Electrical and Electronics Engineers, pp. 612–634, 2021.
Scholkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y. 2021. Toward causal representation learning. Proceedings of the IEEE. 109(5), 612–634.
Scholkopf, Bernhard, et al. “Toward Causal Representation Learning.” Proceedings of the IEEE, vol. 109, no. 5, Institute of Electrical and Electronics Engineers, 2021, pp. 612–34, doi:10.1109/jproc.2021.3058954.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2102.11107

Search this title in

Google Scholar