PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

Simon S, Skůpa P, Viaene T, Zwiewka M, Tejos R, Klíma P, Čarná M, Rolčík J, De Rycke R, Moreno I, Dobrev P, Orellana A, Zažímalová E, Friml J. 2016. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. 211(1), 65–74.

Download
OA IST-2018-1004-v1+1_Simon_NewPhytol_2016_proof.pdf 3.83 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Simon, SibuISTA ; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre; Orellana, Ariel
All

Corresponding author has ISTA affiliation

Department
Abstract
Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.
Publishing Year
Date Published
2016-07-01
Journal Title
New Phytologist
Publisher
Wiley-Blackwell
Acknowledgement
This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP, project CEITEC (CZ.1.05/1.1.00/02.0068) and the Czech Science Foundation GACR (project no. 13-4063 7S to J.F.)
Volume
211
Issue
1
Page
65 - 74
IST-REx-ID

Cite this

Simon S, Skůpa P, Viaene T, et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. 2016;211(1):65-74. doi:10.1111/nph.14019
Simon, S., Skůpa, P., Viaene, T., Zwiewka, M., Tejos, R., Klíma, P., … Friml, J. (2016). PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. Wiley-Blackwell. https://doi.org/10.1111/nph.14019
Simon, Sibu, Petr Skůpa, Tom Viaene, Marta Zwiewka, Ricardo Tejos, Petr Klíma, Mária Čarná, et al. “PIN6 Auxin Transporter at Endoplasmic Reticulum and Plasma Membrane Mediates Auxin Homeostasis and Organogenesis in Arabidopsis.” New Phytologist. Wiley-Blackwell, 2016. https://doi.org/10.1111/nph.14019.
S. Simon et al., “PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis,” New Phytologist, vol. 211, no. 1. Wiley-Blackwell, pp. 65–74, 2016.
Simon S, Skůpa P, Viaene T, Zwiewka M, Tejos R, Klíma P, Čarná M, Rolčík J, De Rycke R, Moreno I, Dobrev P, Orellana A, Zažímalová E, Friml J. 2016. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. 211(1), 65–74.
Simon, Sibu, et al. “PIN6 Auxin Transporter at Endoplasmic Reticulum and Plasma Membrane Mediates Auxin Homeostasis and Organogenesis in Arabidopsis.” New Phytologist, vol. 211, no. 1, Wiley-Blackwell, 2016, pp. 65–74, doi:10.1111/nph.14019.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
23522ced3508ffe7a4f247c4230e6493


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar