Design of stimulus-responsive two-state hinge proteins

Praetorius FM, Leung PJY, Tessmer MH, Broerman A, Demakis C, Dishman AF, Pillai A, Idris A, Juergens D, Dauparas J, Li X, Levine PM, Lamb M, Ballard RK, Gerben SR, Nguyen H, Kang A, Sankaran B, Bera AK, Volkman BF, Nivala J, Stoll S, Baker D. 2023. Design of stimulus-responsive two-state hinge proteins. Science. 381(6659), 754–760.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Praetorius, Florian MISTA; Leung, Philip J. Y.; Tessmer, Maxx H.; Broerman, Adam; Demakis, Cullen; Dishman, Acacia F.; Pillai, Arvind; Idris, Abbas; Juergens, David; Dauparas, Justas; Li, Xinting; Levine, Paul M.
All
Abstract
In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of “hinge” proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.
Publishing Year
Date Published
2023-08-17
Journal Title
Science
Volume
381
Issue
6659
Page
754-760
ISSN
eISSN
IST-REx-ID

Cite this

Praetorius FM, Leung PJY, Tessmer MH, et al. Design of stimulus-responsive two-state hinge proteins. Science. 2023;381(6659):754-760. doi:10.1126/science.adg7731
Praetorius, F. M., Leung, P. J. Y., Tessmer, M. H., Broerman, A., Demakis, C., Dishman, A. F., … Baker, D. (2023). Design of stimulus-responsive two-state hinge proteins. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adg7731
Praetorius, Florian M, Philip J. Y. Leung, Maxx H. Tessmer, Adam Broerman, Cullen Demakis, Acacia F. Dishman, Arvind Pillai, et al. “Design of Stimulus-Responsive Two-State Hinge Proteins.” Science. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/science.adg7731.
F. M. Praetorius et al., “Design of stimulus-responsive two-state hinge proteins,” Science, vol. 381, no. 6659. American Association for the Advancement of Science, pp. 754–760, 2023.
Praetorius FM, Leung PJY, Tessmer MH, Broerman A, Demakis C, Dishman AF, Pillai A, Idris A, Juergens D, Dauparas J, Li X, Levine PM, Lamb M, Ballard RK, Gerben SR, Nguyen H, Kang A, Sankaran B, Bera AK, Volkman BF, Nivala J, Stoll S, Baker D. 2023. Design of stimulus-responsive two-state hinge proteins. Science. 381(6659), 754–760.
Praetorius, Florian M., et al. “Design of Stimulus-Responsive Two-State Hinge Proteins.” Science, vol. 381, no. 6659, American Association for the Advancement of Science, 2023, pp. 754–60, doi:10.1126/science.adg7731.

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 37590357
PubMed | Europe PMC

Search this title in

Google Scholar