The Dyson equation with linear self-energy: Spectral bands, edges and cusps

Alt J, Erdös L, Krüger TH. 2020. The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. 25, 1421–1539.

Download
OA 2020_DocumentaMathematica_Alt.pdf 1.37 MB [Published Version]

Journal Article | Published | English
Department
Abstract
We study the unique solution m of the Dyson equation \( -m(z)^{-1} = z\1 - a + S[m(z)] \) on a von Neumann algebra A with the constraint Imm≥0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear operator on A. We show that m is the Stieltjes transform of a compactly supported A-valued measure on R. Under suitable assumptions, we establish that this measure has a uniformly 1/3-Hölder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of m near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [the first author et al., Ann. Probab. 48, No. 2, 963--1001 (2020; Zbl 1434.60017)] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [G. Cipolloni et al., Pure Appl. Anal. 1, No. 4, 615--707 (2019; Zbl 07142203); the second author et al., Commun. Math. Phys. 378, No. 2, 1203--1278 (2020; Zbl 07236118)]. We also extend the finite dimensional band mass formula from [the first author et al., loc. cit.] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases.
Publishing Year
Date Published
2020-09-01
Journal Title
Documenta Mathematica
Volume
25
Page
1421-1539
ISSN
eISSN
IST-REx-ID

Cite this

Alt J, Erdös L, Krüger TH. The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. 2020;25:1421-1539. doi:10.4171/dm/780
Alt, J., Erdös, L., & Krüger, T. H. (2020). The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. EMS Press. https://doi.org/10.4171/dm/780
Alt, Johannes, László Erdös, and Torben H Krüger. “The Dyson Equation with Linear Self-Energy: Spectral Bands, Edges and Cusps.” Documenta Mathematica. EMS Press, 2020. https://doi.org/10.4171/dm/780.
J. Alt, L. Erdös, and T. H. Krüger, “The Dyson equation with linear self-energy: Spectral bands, edges and cusps,” Documenta Mathematica, vol. 25. EMS Press, pp. 1421–1539, 2020.
Alt J, Erdös L, Krüger TH. 2020. The Dyson equation with linear self-energy: Spectral bands, edges and cusps. Documenta Mathematica. 25, 1421–1539.
Alt, Johannes, et al. “The Dyson Equation with Linear Self-Energy: Spectral Bands, Edges and Cusps.” Documenta Mathematica, vol. 25, EMS Press, 2020, pp. 1421–539, doi:10.4171/dm/780.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-12-18
MD5 Checksum
12aacc1d63b852ff9a51c1f6b218d4a6


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1804.07752

Search this title in

Google Scholar