Functional John and Löwner conditions for pairs of log-concave functions

Ivanov G, Naszódi M. 2023. Functional John and Löwner conditions for pairs of log-concave functions. International Mathematics Research Notices. 2023(23), 20613–20669.

Download
OA 2023_IMRN_Ivanov.pdf 815.78 KB

Journal Article | Published | English
Author
Ivanov, GrigoryISTA; Naszódi, Márton
Department
Abstract
John’s fundamental theorem characterizing the largest volume ellipsoid contained in a convex body $K$ in $\mathbb{R}^{d}$ has seen several generalizations and extensions. One direction, initiated by V. Milman is to replace ellipsoids by positions (affine images) of another body $L$. Another, more recent direction is to consider logarithmically concave functions on $\mathbb{R}^{d}$ instead of convex bodies: we designate some special, radially symmetric log-concave function $g$ as the analogue of the Euclidean ball, and want to find its largest integral position under the constraint that it is pointwise below some given log-concave function $f$. We follow both directions simultaneously: we consider the functional question, and allow essentially any meaningful function to play the role of $g$ above. Our general theorems jointly extend known results in both directions. The dual problem in the setting of convex bodies asks for the smallest volume ellipsoid, called Löwner’s ellipsoid, containing $K$. We consider the analogous problem for functions: we characterize the solutions of the optimization problem of finding a smallest integral position of some log-concave function $g$ under the constraint that it is pointwise above $f$. It turns out that in the functional setting, the relationship between the John and the Löwner problems is more intricate than it is in the setting of convex bodies.
Publishing Year
Date Published
2023-12-01
Journal Title
International Mathematics Research Notices
Acknowledgement
We thank Alexander Litvak for the many discussions on Theorem 1.1. Igor Tsiutsiurupa participated in the early stage of this project. To our deep regret, Igor chose another road for his life and stopped working with us. This work was supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences [to M.N.]; the National Research, Development, and Innovation Fund (NRDI) [K119670 and K131529 to M.N.]; and the ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and Technology from the source of the NRDI [to M.N.].
Volume
2023
Issue
23
Page
20613-20669
ISSN
eISSN
IST-REx-ID

Cite this

Ivanov G, Naszódi M. Functional John and Löwner conditions for pairs of log-concave functions. International Mathematics Research Notices. 2023;2023(23):20613-20669. doi:10.1093/imrn/rnad210
Ivanov, G., & Naszódi, M. (2023). Functional John and Löwner conditions for pairs of log-concave functions. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnad210
Ivanov, Grigory, and Márton Naszódi. “Functional John and Löwner Conditions for Pairs of Log-Concave Functions.” International Mathematics Research Notices. Oxford University Press, 2023. https://doi.org/10.1093/imrn/rnad210.
G. Ivanov and M. Naszódi, “Functional John and Löwner conditions for pairs of log-concave functions,” International Mathematics Research Notices, vol. 2023, no. 23. Oxford University Press, pp. 20613–20669, 2023.
Ivanov G, Naszódi M. 2023. Functional John and Löwner conditions for pairs of log-concave functions. International Mathematics Research Notices. 2023(23), 20613–20669.
Ivanov, Grigory, and Márton Naszódi. “Functional John and Löwner Conditions for Pairs of Log-Concave Functions.” International Mathematics Research Notices, vol. 2023, no. 23, Oxford University Press, 2023, pp. 20613–69, doi:10.1093/imrn/rnad210.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2024-01-08
MD5 Checksum
353666cea80633beb0f1ffd342dff6d4


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2212.11781

Search this title in

Google Scholar