Mean structure of the supercritical turbulent spiral in Taylor–Couette flow

Wang B, Mellibovsky F, Ayats López R, Deguchi K, Meseguer A. 2023. Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. 381(2246), 0112.

Download
OA 2023_PhilTransactionsA_Wang_accepted.pdf 6.42 MB

Journal Article | Published | English

Scopus indexed
Author
Wang, B.; Mellibovsky, F.; Ayats López, RogerISTA ; Deguchi, K.; Meseguer, A.
Department
Abstract
The large-scale laminar/turbulent spiral patterns that appear in the linearly unstable regime of counter-rotating Taylor–Couette flow are investigated from a statistical perspective by means of direct numerical simulation. Unlike the vast majority of previous numerical studies, we analyse the flow in periodic parallelogram-annular domains, following a coordinate change that aligns one of the parallelogram sides with the spiral pattern. The domain size, shape and spatial resolution have been varied and the results compared with those in a sufficiently large computational orthogonal domain with natural axial and azimuthal periodicity. We find that a minimal parallelogram of the right tilt significantly reduces the computational cost without notably compromising the statistical properties of the supercritical turbulent spiral. Its mean structure, obtained from extremely long time integrations in a co-rotating reference frame using the method of slices, bears remarkable similarity with the turbulent stripes observed in plane Couette flow, the centrifugal instability playing only a secondary role.
Publishing Year
Date Published
2023-05-01
Journal Title
Philosophical Transactions of the Royal Society A
Acknowledgement
K.D.’s research was supported by Australian Research Council Discovery Early Career Researcher Award (DE170100171). B.W., R.A., F.M. and A.M. research was supported by the Spanish Ministerio de Economía y Competitividad (grant nos. FIS2016-77849-R and FIS2017-85794-P) and Ministerio de Ciencia e Innovación (grant no. PID2020-114043GB-I00) and the Generalitat de Catalunya (grant no. 2017-SGR-785). B.W.’s research was also supported by the Chinese Scholarship Council (grant CSC no. 201806440152). F.M. is a Serra-Húnter Fellow.
Volume
381
Issue
2246
Article Number
0112
ISSN
eISSN
IST-REx-ID

Cite this

Wang B, Mellibovsky F, Ayats López R, Deguchi K, Meseguer A. Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. 2023;381(2246). doi:10.1098/rsta.2022.0112
Wang, B., Mellibovsky, F., Ayats López, R., Deguchi, K., & Meseguer, A. (2023). Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. The Royal Society. https://doi.org/10.1098/rsta.2022.0112
Wang, B., F. Mellibovsky, Roger Ayats López, K. Deguchi, and A. Meseguer. “Mean Structure of the Supercritical Turbulent Spiral in Taylor–Couette Flow.” Philosophical Transactions of the Royal Society A. The Royal Society, 2023. https://doi.org/10.1098/rsta.2022.0112.
B. Wang, F. Mellibovsky, R. Ayats López, K. Deguchi, and A. Meseguer, “Mean structure of the supercritical turbulent spiral in Taylor–Couette flow,” Philosophical Transactions of the Royal Society A, vol. 381, no. 2246. The Royal Society, 2023.
Wang B, Mellibovsky F, Ayats López R, Deguchi K, Meseguer A. 2023. Mean structure of the supercritical turbulent spiral in Taylor–Couette flow. Philosophical Transactions of the Royal Society A. 381(2246), 0112.
Wang, B., et al. “Mean Structure of the Supercritical Turbulent Spiral in Taylor–Couette Flow.” Philosophical Transactions of the Royal Society A, vol. 381, no. 2246, 0112, The Royal Society, 2023, doi:10.1098/rsta.2022.0112.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-01-09
MD5 Checksum
1978d126c0ce2f47c22ac20107cc0106


Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 36907214
PubMed | Europe PMC

Search this title in

Google Scholar