Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia
Fugger S, Shaw T, Jouberton A, Miles E, Buri P, McCarthy M, Fyffe CL, Fatichi S, Kneib M, Molnar P, Pellicciotti F. 2024. Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. 19, 044057.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Fugger, StefanISTA;
Shaw, ThomasISTA ;
Jouberton, Achille;
Miles, Evan;
Buri, PascalISTA;
McCarthy, MichaelISTA;
Fyffe, Catriona LouiseISTA;
Fatichi, Simone;
Kneib, Marin;
Molnar, Peter;
Pellicciotti, FrancescaISTA
Corresponding author has ISTA affiliation
Department
Abstract
High elevation headwater catchments are complex hydrological systems that seasonally buffer water and release it in the form of snow and ice melt, modulating downstream runoff regimes and water availability. In High Mountain Asia (HMA), where a wide range of climates from semi-arid to monsoonal exist, the importance of the cryospheric contributions to the water budget varies with the amount and seasonal distribution of precipitation. Losses due to evapotranspiration and sublimation are to date largely unquantified components of the water budget in such catchments, although they can be comparable in magnitude to glacier melt contributions to streamflow. 
Here, we simulate the hydrology of three high elevation headwater catchments in distinct climates in HMA over 10 years using an ecohydrological model geared towards high-mountain areas including snow and glaciers, forced with reanalysis data. 
Our results show that evapotranspiration and sublimation together are most important at the semi-arid site, Kyzylsu, on the northernmost slopes of the Pamir mountain range. Here, the evaporative loss amounts to 28% of the water throughput, which we define as the total water added to, or removed from the water balance within a year. In comparison, evaporative losses are 19% at the Central Himalayan site Langtang and 13% at the wettest site, 24K, on the Southeastern Tibetan Plateau. At the three sites, respectively, sublimation removes 15%, 13% and 6% of snowfall, while evapotranspiration removes the equivalent of 76%, 28% and 19% of rainfall. In absolute terms, and across a comparable elevation range, the highest ET flux is 413 mm yr-1 at 24K, while the highest sublimation flux is 91 mm yr-1 at Kyzylsu. During warm and dry years, glacier melt was found to only partially compensate for the annual supply deficit.
Keywords
Publishing Year
Date Published
2024-04-09
Journal Title
Environmental Research Letters
Publisher
IOP Publishing
Acknowledgement
We would like to thank the team at the Center for the Research of Glaciers, Tajik National Academy of Sciences, Abduhamid Kayumov, Khusrav Kabutov, Ardamehr Halimov, among others, for their invaluable support over multiple field seasons in Kyzylsu. We thank Wei Yang, Zhao Xhuanxi and Zhen Cheng from the Institute of Tibetan Plateau Research, Chinese Academy of Sciences, for facilitating and supporting fieldwork and for sharing crucial data from the Parlung 24K catchment. We thank Reeju Shrestha and Himalayan Research Expeditions for their great support in Langtang. We extend our thanks to Jakob Steiner and the team at ICIMOD for their relentless efforts in data acquisition and curation in Langtang. Additionally, we are indebted to Masashi Niwano from the Meteorological Research Institute, Japan Meteorological Agency, for providing NHM atmospheric simulation outputs, which proved very valuable in the downscaling process.
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program Grant Agreements No. 772751 (RAVEN, Rapid mass losses of debris-covered glaciers in High Mountain Asia). Further funding was provided by JSPS-SNSF (Japan Society for the Promotion of Science and Swiss National Science Foundation) Bilateral Programmes project (HOPE, High-elevation precipitation in High Mountain Asia; Grant 183633). Fieldwork support for Tajikistan was received from the Swiss Polar Institute Flagship Programme PAMIR, SPI-FLAG-2021-001. The project also received funding from the ESA and NRSCC Dragon 5 cooperation project 'Cryosphere-hydrosphere interactions of the Asian water towers: using remote sensing to drive hyper-resolution ecohydrological modeling' (grant no. 59199). The National Natural Science Foundation of China (41961134035) financially supported the data collection at 24K.
Volume
19
Article Number
044057
ISSN
IST-REx-ID
Cite this
Fugger S, Shaw T, Jouberton A, et al. Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. 2024;19. doi:10.1088/1748-9326/ad25a0
Fugger, S., Shaw, T., Jouberton, A., Miles, E., Buri, P., McCarthy, M., … Pellicciotti, F. (2024). Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. IOP Publishing. https://doi.org/10.1088/1748-9326/ad25a0
Fugger, Stefan, Thomas Shaw, Achille Jouberton, Evan Miles, Pascal Buri, Michael McCarthy, Catriona Louise Fyffe, et al. “Hydrological Regimes and Evaporative Flux Partitioning at the Climatic Ends of High Mountain Asia.” Environmental Research Letters. IOP Publishing, 2024. https://doi.org/10.1088/1748-9326/ad25a0.
S. Fugger et al., “Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia,” Environmental Research Letters, vol. 19. IOP Publishing, 2024.
Fugger S, Shaw T, Jouberton A, Miles E, Buri P, McCarthy M, Fyffe CL, Fatichi S, Kneib M, Molnar P, Pellicciotti F. 2024. Hydrological regimes and evaporative flux partitioning at the climatic ends of High Mountain Asia. Environmental Research Letters. 19, 044057.
Fugger, Stefan, et al. “Hydrological Regimes and Evaporative Flux Partitioning at the Climatic Ends of High Mountain Asia.” Environmental Research Letters, vol. 19, 044057, IOP Publishing, 2024, doi:10.1088/1748-9326/ad25a0.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2024_EnvironmResearch_Fugger.pdf
4.43 MB
Access Level
Open Access
Date Uploaded
2024-07-22
MD5 Checksum
27999359b51c30fec6d81e48cdf0ee0d