Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics

Karle V, Lemeshko M. 2024. Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. 109(2), 023101.

Download (ext.)

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
The impulsive limit (the “sudden approximation”) has been widely employed to describe the interaction between molecules and short, far-off-resonant laser pulses. This approximation assumes that the timescale of the laser-molecule interaction is significantly shorter than the internal rotational period of the molecule, resulting in the rotational motion being instantaneously “frozen” during the interaction. This simplified description of the laser-molecule interaction is incorporated in various theoretical models predicting rotational dynamics of molecules driven by short laser pulses. In this theoretical work, we develop an effective theory for ultrashort laser pulses by examining the full time-evolution operator and solving the time-dependent Schrödinger equation at the operator level. Our findings reveal a critical angular momentum, lcrit, at which the impulsive limit breaks down. In other words, the validity of the sudden approximation depends not only on the pulse duration but also on its intensity, since the latter determines how many angular momentum states are populated. We explore both ultrashort multicycle (Gaussian) pulses and the somewhat less studied half-cycle pulses, which produce distinct effective potentials. We discuss the limitations of the impulsive limit and propose a method that rescales the effective matrix elements, enabling an improved and more accurate description of laser-molecule interactions.
Publishing Year
Date Published
2024-02-01
Journal Title
Physical Review A
Publisher
American Physical Society
Acknowledgement
We thank Bretislav Friedrich, Marjan Mirahmadi, Artem Volosniev, and Burkhard Schmidt for insightful discussions. M.L. acknowledges support by the European Research Council (ERC) under Starting Grant No. 801770 (ANGULON).
Volume
109
Issue
2
Article Number
023101
ISSN
eISSN
IST-REx-ID

Cite this

Karle V, Lemeshko M. Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. 2024;109(2). doi:10.1103/PhysRevA.109.023101
Karle, V., & Lemeshko, M. (2024). Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.109.023101
Karle, Volker, and Mikhail Lemeshko. “Modeling Laser Pulses as δ Kicks: Reevaluating the Impulsive Limit in Molecular Rotational Dynamics.” Physical Review A. American Physical Society, 2024. https://doi.org/10.1103/PhysRevA.109.023101.
V. Karle and M. Lemeshko, “Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics,” Physical Review A, vol. 109, no. 2. American Physical Society, 2024.
Karle V, Lemeshko M. 2024. Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. 109(2), 023101.
Karle, Volker, and Mikhail Lemeshko. “Modeling Laser Pulses as δ Kicks: Reevaluating the Impulsive Limit in Molecular Rotational Dynamics.” Physical Review A, vol. 109, no. 2, 023101, American Physical Society, 2024, doi:10.1103/PhysRevA.109.023101.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2307.07256

Search this title in

Google Scholar