Molecular recognition at septin interfaces: The switches hold the key

Rosa HVD, Leonardo DA, Brognara G, Brandão-Neto J, D’Muniz Pereira H, Araújo APU, Garratt RC. 2020. Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. 432(21), 5784–5801.

Download (ext.)

Journal Article | Published | English
Author
Rosa, Higor Vinícius Dias; Leonardo, Diego Antonio; Brognara, GabrielISTA; Brandão-Neto, José; D'Muniz Pereira, Humberto; Araújo, Ana Paula Ulian; Garratt, Richard Charles
Department
Abstract
The assembly of a septin filament requires that homologous monomers must distinguish between one another in establishing appropriate interfaces with their neighbors. To understand this phenomenon at the molecular level, we present the first four crystal structures of heterodimeric septin complexes. We describe in detail the two distinct types of G-interface present within the octameric particles, which must polymerize to form filaments. These are formed between SEPT2 and SEPT6 and between SEPT7 and SEPT3, and their description permits an understanding of the structural basis for the selectivity necessary for correct filament assembly. By replacing SEPT6 by SEPT8 or SEPT11, it is possible to rationalize Kinoshita's postulate, which predicts the exchangeability of septins from within a subgroup. Switches I and II, which in classical small GTPases provide a mechanism for nucleotide-dependent conformational change, have been repurposed in septins to play a fundamental role in molecular recognition. Specifically, it is switch I which holds the key to discriminating between the two different G-interfaces. Moreover, residues which are characteristic for a given subgroup play subtle, but pivotal, roles in guaranteeing that the correct interfaces are formed.
Publishing Year
Date Published
2020-10-02
Journal Title
Journal of Molecular Biology
Publisher
Elsevier
Volume
432
Issue
21
Page
5784-5801
ISSN
IST-REx-ID

Cite this

Rosa HVD, Leonardo DA, Brognara G, et al. Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. 2020;432(21):5784-5801. doi:10.1016/j.jmb.2020.09.001
Rosa, H. V. D., Leonardo, D. A., Brognara, G., Brandão-Neto, J., D’Muniz Pereira, H., Araújo, A. P. U., & Garratt, R. C. (2020). Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. Elsevier. https://doi.org/10.1016/j.jmb.2020.09.001
Rosa, Higor Vinícius Dias, Diego Antonio Leonardo, Gabriel Brognara, José Brandão-Neto, Humberto D’Muniz Pereira, Ana Paula Ulian Araújo, and Richard Charles Garratt. “Molecular Recognition at Septin Interfaces: The Switches Hold the Key.” Journal of Molecular Biology. Elsevier, 2020. https://doi.org/10.1016/j.jmb.2020.09.001.
H. V. D. Rosa et al., “Molecular recognition at septin interfaces: The switches hold the key,” Journal of Molecular Biology, vol. 432, no. 21. Elsevier, pp. 5784–5801, 2020.
Rosa HVD, Leonardo DA, Brognara G, Brandão-Neto J, D’Muniz Pereira H, Araújo APU, Garratt RC. 2020. Molecular recognition at septin interfaces: The switches hold the key. Journal of Molecular Biology. 432(21), 5784–5801.
Rosa, Higor Vinícius Dias, et al. “Molecular Recognition at Septin Interfaces: The Switches Hold the Key.” Journal of Molecular Biology, vol. 432, no. 21, Elsevier, 2020, pp. 5784–801, doi:10.1016/j.jmb.2020.09.001.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 32910969
PubMed | Europe PMC

Search this title in

Google Scholar