Čech-Delaunay gradient flow and homology inference for self-maps
Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. 2020. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 4(4), 455–480.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Department
Abstract
We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for Čech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive Čech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.
Publishing Year
Date Published
2020-12-01
Journal Title
Journal of Applied and Computational Topology
Publisher
Springer Nature
Acknowledgement
This research has been supported by the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”, by Polish MNiSzW Grant No. 2621/7.PR/12/2013/2, by the Polish National Science Center under Maestro Grant No. 2014/14/A/ST1/00453 and Grant No. DEC-2013/09/N/ST6/02995. Open Access funding provided by Projekt DEAL.
Volume
4
Issue
4
Page
455-480
ISSN
eISSN
IST-REx-ID
Cite this
Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 2020;4(4):455-480. doi:10.1007/s41468-020-00058-8
Bauer, U., Edelsbrunner, H., Jablonski, G., & Mrozek, M. (2020). Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. Springer Nature. https://doi.org/10.1007/s41468-020-00058-8
Bauer, U., Herbert Edelsbrunner, Grzegorz Jablonski, and M. Mrozek. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology. Springer Nature, 2020. https://doi.org/10.1007/s41468-020-00058-8.
U. Bauer, H. Edelsbrunner, G. Jablonski, and M. Mrozek, “Čech-Delaunay gradient flow and homology inference for self-maps,” Journal of Applied and Computational Topology, vol. 4, no. 4. Springer Nature, pp. 455–480, 2020.
Bauer U, Edelsbrunner H, Jablonski G, Mrozek M. 2020. Čech-Delaunay gradient flow and homology inference for self-maps. Journal of Applied and Computational Topology. 4(4), 455–480.
Bauer, U., et al. “Čech-Delaunay Gradient Flow and Homology Inference for Self-Maps.” Journal of Applied and Computational Topology, vol. 4, no. 4, Springer Nature, 2020, pp. 455–80, doi:10.1007/s41468-020-00058-8.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2020_JourApplCompTopology_Bauer.pdf
851.19 KB
Access Level
Open Access
Date Uploaded
2024-03-04
MD5 Checksum
eed1168b6e66cd55272c19bb7fca8a1c