Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling
Yao Z, Liu X, Bunting R, Wang J. 2024. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 291, 119959.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Yao, Zihao;
Liu, Xu;
Bunting, RhysISTA ;
Wang, Jianguo
Department
Abstract
As a key liquid organic hydrogen carrier, investigating the decomposition of formic acid (HCOOH) on the Pd (1 1 1) transition metal surface is imperative for harnessing hydrogen energy. Despite a multitude of studies, the major mechanisms and key intermediates involved in the dehydrogenation process of formic acid remain a great topic of debate due to ambiguous adsorbate interactions. In this research, we develop an advanced microkinetic model based on first-principles calculations, accounting for adsorbate–adsorbate interactions. Our study unveils a comprehensive mechanism for the Pd (1 1 1) surface, highlighting the significance of coverage effects in formic acid dehydrogenation. Our findings unequivocally demonstrate that H coverage on the Pd (1 1 1) surface renders formic acid more susceptible to decompose into H2 and CO2 through COOH intermediates. Consistent with experimental results, the selectivity of H2 in the decomposition of formic acid on the Pd (1 1 1) surface approaches 100 %. Considering the influence of H coverage, our kinetic analysis aligns perfectly with experimental values at a temperature of 373 K.
Publishing Year
Date Published
2024-06-05
Journal Title
Chemical Engineering Science
Publisher
Elsevier
Acknowledgement
The authors acknowledge the financial support from the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), the National Natural Science Foundation of China (22141001, U21A20298), Zhejiang Innovation Team (2017R5203).
Volume
291
Article Number
119959
ISSN
IST-REx-ID
Cite this
Yao Z, Liu X, Bunting R, Wang J. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 2024;291. doi:10.1016/j.ces.2024.119959
Yao, Z., Liu, X., Bunting, R., & Wang, J. (2024). Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. Elsevier. https://doi.org/10.1016/j.ces.2024.119959
Yao, Zihao, Xu Liu, Rhys Bunting, and Jianguo Wang. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science. Elsevier, 2024. https://doi.org/10.1016/j.ces.2024.119959.
Z. Yao, X. Liu, R. Bunting, and J. Wang, “Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling,” Chemical Engineering Science, vol. 291. Elsevier, 2024.
Yao Z, Liu X, Bunting R, Wang J. 2024. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 291, 119959.
Yao, Zihao, et al. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science, vol. 291, 119959, Elsevier, 2024, doi:10.1016/j.ces.2024.119959.