The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation

Hwong Y-L, Muller CJ. 2024. The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. 51(6), e2023GL106523.

Download
OA 2024_GeophysResLetters_Hwong.pdf 1.28 MB

Journal Article | Published | English
Department
Abstract
The elimination of rain evaporation in the planetary boundary layer (PBL) has been found to lead to convective self‐aggregation (CSA) even without radiative feedback, but the precise mechanisms underlying this phenomenon remain unclear. We conducted cloud‐resolving simulations with two domain sizes and progressively reduced rain evaporation in the PBL. Surprisingly, CSA only occurred when rain evaporation was almost completely removed. The additional convective heating resulting from the reduction of evaporative cooling in the moist patch was found to be the trigger, thereafter a dry subsidence intrusion into the PBL in the dry patch takes over and sets CSA in motion. Temperature and moisture anomalies oppose each other in their buoyancy effects, hence explaining the need for almost total rain evaporation removal. We also found radiative cooling and not cold pools to be the leading cause for the comparative ease of CSA to take place in the larger domain.
Publishing Year
Date Published
2024-03-19
Journal Title
Geophysical Research Letters
Acknowledgement
YLH is supported by funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant 101034413. CM gratefully acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Project CLUSTER, Grant 805041). The authors warmly thank Steven Sherwood, Jiawei Bao, Bidyut Goswami, and Martin Janssens for stimulating and helpful discussions. They also thank Christopher Holloway and an anonymous reviewer for providing helpful feedback that greatly improved this manuscript.
Volume
51
Issue
6
Article Number
e2023GL106523
ISSN
eISSN
IST-REx-ID

Cite this

Hwong Y-L, Muller CJ. The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. 2024;51(6). doi:10.1029/2023gl106523
Hwong, Y.-L., & Muller, C. J. (2024). The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. American Geophysical Union. https://doi.org/10.1029/2023gl106523
Hwong, Yi-Ling, and Caroline J Muller. “The Unreasonable Efficiency of Total Rain Evaporation Removal in Triggering Convective Self‐aggregation.” Geophysical Research Letters. American Geophysical Union, 2024. https://doi.org/10.1029/2023gl106523.
Y.-L. Hwong and C. J. Muller, “The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation,” Geophysical Research Letters, vol. 51, no. 6. American Geophysical Union, 2024.
Hwong Y-L, Muller CJ. 2024. The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. 51(6), e2023GL106523.
Hwong, Yi-Ling, and Caroline J. Muller. “The Unreasonable Efficiency of Total Rain Evaporation Removal in Triggering Convective Self‐aggregation.” Geophysical Research Letters, vol. 51, no. 6, e2023GL106523, American Geophysical Union, 2024, doi:10.1029/2023gl106523.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-03-25
MD5 Checksum
eacb011091a503b9e7b748fef639ba4c


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar