Quantitative interprocedural analysis
Chatterjee K, Pavlogiannis A, Velner Y. 2015. Quantitative interprocedural analysis. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT . 50(1), 539–551.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Corresponding author has ISTA affiliation
Department
Grant
Abstract
We consider the quantitative analysis problem for interprocedural control-flow graphs (ICFGs). The input consists of an ICFG, a positive weight function that assigns every transition a positive integer-valued number, and a labelling of the transitions (events) as good, bad, and neutral events. The weight function assigns to each transition a numerical value that represents ameasure of how good or bad an event is. The quantitative analysis problem asks whether there is a run of the ICFG where the ratio of the sum of the numerical weights of good events versus the sum of weights of bad events in the long-run is at least a given threshold (or equivalently, to compute the maximal ratio among all valid paths in the ICFG). The quantitative analysis problem for ICFGs can be solved in polynomial time, and we present an efficient and practical algorithm for the problem. We show that several problems relevant for static program analysis, such as estimating the worst-case execution time of a program or the average energy consumption of a mobile application, can be modeled in our framework. We have implemented our algorithm as a tool in the Java Soot framework. We demonstrate the effectiveness of our approach with two case studies. First, we show that our framework provides a sound approach (no false positives) for the analysis of inefficiently-used containers. Second, we show that our approach can also be used for static profiling of programs which reasons about methods that are frequently invoked. Our experimental results show that our tool scales to relatively large benchmarks, and discovers relevant and useful information that can be used to optimize performance of the programs.
Publishing Year
Date Published
2015-01-01
Journal Title
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Publisher
ACM
Volume
50
Issue
1
Page
539 - 551
Conference
SIGPLAN: Symposium on Principles of Programming Languages
Conference Location
Mumbai, India
Conference Date
2015-01-15 – 2015-01-17
ISBN
IST-REx-ID
Cite this
Chatterjee K, Pavlogiannis A, Velner Y. Quantitative interprocedural analysis. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT . 2015;50(1):539-551. doi:10.1145/2676726.2676968
Chatterjee, K., Pavlogiannis, A., & Velner, Y. (2015). Quantitative interprocedural analysis. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT . Mumbai, India: ACM. https://doi.org/10.1145/2676726.2676968
Chatterjee, Krishnendu, Andreas Pavlogiannis, and Yaron Velner. “Quantitative Interprocedural Analysis.” Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT . ACM, 2015. https://doi.org/10.1145/2676726.2676968.
K. Chatterjee, A. Pavlogiannis, and Y. Velner, “Quantitative interprocedural analysis,” Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT , vol. 50, no. 1. ACM, pp. 539–551, 2015.
Chatterjee K, Pavlogiannis A, Velner Y. 2015. Quantitative interprocedural analysis. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT . 50(1), 539–551.
Chatterjee, Krishnendu, et al. “Quantitative Interprocedural Analysis.” Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT , vol. 50, no. 1, ACM, 2015, pp. 539–51, doi:10.1145/2676726.2676968.
Material in ISTA:
Earlier Version
Dissertation containing ISTA record